Prior-shared feature and model space speaker adaptation by consistently employing map estimation

Seong Jun Hahm*, Shinji Watanabe, Atsunori Ogawa, Masakiyo Fujimoto, Takaaki Hori, Atsushi Nakamura

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The purpose of this paper is to describe the development of a speaker adaptation method that improves speech recognition performance regardless of the amount of adaptation data. For that purpose, we propose the consistent employment of a maximum a posteriori (MAP)-based Bayesian estimation for both feature space normalization and model space adaptation. Namely, constrained structural maximum a posteriori linear regression (CSMAPLR) is first performed in a feature space to compensate for the speaker characteristics, and then, SMAPLR is performed in a model space to capture the remaining speaker characteristics. A prior distribution stabilizes the parameter estimation especially when the amount of adaptation data is small. In the proposed method, CSMAPLR and SMAPLR are performed based on the same acoustic model. Therefore, the dimension-dependent variations of feature and model spaces can be similar. Dimension-dependent variations of the transformation matrix are explained well by the prior distribution. Therefore, by sharing the same prior distribution between CSMAPLR and SMAPLR, their parameter estimations can be appropriately regularized in both spaces. Experiments on large vocabulary continuous speech recognition using the Corpus of Spontaneous Japanese (CSJ) and the MIT OpenCourseWare corpus (MIT-OCW) confirm the effectiveness of the proposed method compared with other conventional adaptation methods with and without using speaker adaptive training.

Original languageEnglish
Pages (from-to)415-431
Number of pages17
JournalSpeech Communication
Volume55
Issue number3
DOIs
Publication statusPublished - 2013
Externally publishedYes

Keywords

  • Feature space normalization
  • Model space adaptation
  • Prior distribution sharing
  • Speaker adaptation
  • Speech recognition

ASJC Scopus subject areas

  • Software
  • Modelling and Simulation
  • Communication
  • Language and Linguistics
  • Linguistics and Language
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Prior-shared feature and model space speaker adaptation by consistently employing map estimation'. Together they form a unique fingerprint.

Cite this