## Abstract

The Bogoliubov-de Gennes equations are used for a number of theoretical works to describe quantum and thermal fluctuations of trapped Bose-Einstein condensates. We consider the case in which the condensate has a highly quantized vortex. It is known that these equations have complex eigenvalues in this case. We give the complete set including a pair of complex modes whose eigenvalues are complex conjugates to each other. The expansion of the quantum fields which represent neutral atoms in terms of the complete set brings the operators associated with the complex modes, which are simply neither bosonic nor fermionic ones. The eigenstate of the Hamiltonian is given. Introducing the notion of the physical states, we discuss the instability of the condensates in the context of Kubo's linear response theory.

Original language | English |
---|---|

Pages (from-to) | 211-214 |

Number of pages | 4 |

Journal | Laser Physics |

Volume | 17 |

Issue number | 2 |

DOIs | |

Publication status | Published - 2007 Feb |

## ASJC Scopus subject areas

- Atomic and Molecular Physics, and Optics
- Instrumentation
- Condensed Matter Physics
- Industrial and Manufacturing Engineering