Quantum sensing of the electron electric dipole moment using ultracold entangled Fr atoms

T. Aoki*, R. Sreekantham, B. K. Sahoo, Bindiya Arora, A. Kastberg, T. Sato, H. Ikeda, N. Okamoto, Y. Torii, T. Hayamizu, K. Nakamura, S. Nagase, M. Ohtsuka, H. Nagahama, N. Ozawa, M. Sato, T. Nakashita, K. Yamane, K. S. Tanaka, K. HaradaH. Kawamura, T. Inoue, A. Uchiyama, A. Hatakeyama, A. Takamine, H. Ueno, Y. Ichikawa, Y. Matsuda, H. Haba, Y. Sakemi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

We propose a method to measure the electron electric dipole moment (eEDM) using ultracold entangled francium (Fr) atoms trapped in an optical lattice, yielding an uncertainty below the standard quantum limit. Among the alkali atoms, Fr offers the largest enhancement factor to the eEDM. With a Fr based experiment, quantum sensing using quantum entangled states could enable a search for the eEDM at a level below 10-30 ecm. We estimate statistical and systematic errors attached to the proposed measurement scheme based on this quantum sensing technique. A successful quantum sensing of the eEDM could enable the exploration of new physics beyond the standard model of particle physics.

Original languageEnglish
Article number044008
JournalQuantum Science and Technology
Volume6
Issue number4
DOIs
Publication statusPublished - 2021 Oct
Externally publishedYes

Keywords

  • atom interferometry
  • electron electric dipole moment
  • laser cooling
  • quantum entanglement
  • quantum sensing
  • spin squeezing

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Materials Science (miscellaneous)
  • Physics and Astronomy (miscellaneous)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Quantum sensing of the electron electric dipole moment using ultracold entangled Fr atoms'. Together they form a unique fingerprint.

Cite this