TY - JOUR
T1 - Randomness in a Galton board from the viewpoint of predictability
T2 - Sensitivity and statistical bias of output states
AU - Arai, Kenichi
AU - Harayama, Takahisa
AU - Sunada, Satoshi
AU - Davis, Peter
PY - 2012/11/27
Y1 - 2012/11/27
N2 - The Galton board is a classic example of the appearance of randomness and stochasticity. In the dynamical model of the Galton board, the macroscopic motion is governed by deterministic equations of motion, and predictability depends on uncertainty in the initial conditions and its evolution by the dynamics. In this sense the Galton board is similar to coin tossing. In this paper, we analyze a simple dynamical model which is inspired by the Galton board. Especially, we focus on the predictability, considering the relation between the uncertainty of initial states and the structure of basins of initial states that result in the same exit state. The model has basins with fractal basin structure, unlike the basins in coin tossing models which have only finite structure. Arbitrarily small uncertainty of initial conditions can cause unpredictability of final states if the initial conditions are chosen in fractal regions. In this sense, our model is in a different category from the coin tossing model. We examine the predictability of a small Galton board model from the viewpoint of the sensitivity and the statistical bias of final states. We show that it is possible to determine the radii of scatterers corresponding to a given predictability criterion, specified as a statistical bias, and a given uncertainty of initial conditions.
AB - The Galton board is a classic example of the appearance of randomness and stochasticity. In the dynamical model of the Galton board, the macroscopic motion is governed by deterministic equations of motion, and predictability depends on uncertainty in the initial conditions and its evolution by the dynamics. In this sense the Galton board is similar to coin tossing. In this paper, we analyze a simple dynamical model which is inspired by the Galton board. Especially, we focus on the predictability, considering the relation between the uncertainty of initial states and the structure of basins of initial states that result in the same exit state. The model has basins with fractal basin structure, unlike the basins in coin tossing models which have only finite structure. Arbitrarily small uncertainty of initial conditions can cause unpredictability of final states if the initial conditions are chosen in fractal regions. In this sense, our model is in a different category from the coin tossing model. We examine the predictability of a small Galton board model from the viewpoint of the sensitivity and the statistical bias of final states. We show that it is possible to determine the radii of scatterers corresponding to a given predictability criterion, specified as a statistical bias, and a given uncertainty of initial conditions.
UR - http://www.scopus.com/inward/record.url?scp=84870664676&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84870664676&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.86.056216
DO - 10.1103/PhysRevE.86.056216
M3 - Article
AN - SCOPUS:84870664676
SN - 1539-3755
VL - 86
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 5
M1 - 056216
ER -