Real time imaging of rotating molecular machines

Kazuhiko Kinosita*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Observation of true rotation has been relatively rare in living systems, but there may be many molecular machines that rotate. Molecular rotations accompanying function can be imaged in real time under an optical microscope by attaching to the protein machine either a small tag such as a single fluorophore or a tag that is huge compared with the size of the protein. As an example of the former approach, axial rotation of an actin filament sliding over myosin has been measured quantitatively by attaching a fluorophore rigidly to the filament and imaging the orientation of the fluorophore continuously by polarization microscopy. As a huge tag in the latter approach, an actin filament turned out to be quite useful. Using this tag, the enzyme F1-ATPase has been shown to be a rotary stepper motor made of a single molecule. Further, the efficiency of this ATP-fueled motor has been shown to reach almost 100%. The two examples above demonstrate that one can now image conformational changes, which necessarily involve reorientation, in a single protein molecule during function. Single-molecule physiology is no longer a dream.

Original languageEnglish
JournalFASEB Journal
Volume13
Issue number15 SUPPL. 2
Publication statusPublished - 1999
Externally publishedYes

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Real time imaging of rotating molecular machines'. Together they form a unique fingerprint.

Cite this