TY - CHAP
T1 - Recognition of fine-grained emotions from text
T2 - An approach based on the compositionality principle
AU - Neviarouskaya, Alena
AU - Prendinger, Helmut
AU - Ishizuka, Mitsuru
PY - 2010
Y1 - 2010
N2 - This chapter addresses the tasks of recognition, interpretation and visualization of affect communicated through text messaging in virtual communication environments. In order to facilitate sensitive and expressive communication in such environments, we introduced a novel syntactic rule-based approach to affect recognition from text. Our Affect Analysis Model follows the compositionality principle, according to which emotional meaning of a sentence is determined by composing parts that correspond to lexical units or other linguistic constituent types governed by the rules of aggregation, propagation, domination, neutralization, and intensification, at various grammatical levels. The proposed rule-based approach processes each sentence in sequential stages, including symbolic cue processing, detection and transformation of abbreviations, sentence parsing, and word/phrase/sentence-level analyses. Our method is capable of processing sentences of different complexity, including simple, compound, complex (with complement and relative clauses), and complex-compound sentences. Affect in text is classified into nine emotion categories (or neutral), and, additionally, information that indicates social communicative behaviour is identified. The evaluation of the Affect Analysis Model algorithm showed promising results regarding its capability to accurately recognize affective information in text from an existing corpus of informal online conversations. The applications of the developed Affect Analysis Model in Instant Messaging system (AffectIM) and in Second Life (EmoHeart, iFeel_IM!) are described in the chapter.
AB - This chapter addresses the tasks of recognition, interpretation and visualization of affect communicated through text messaging in virtual communication environments. In order to facilitate sensitive and expressive communication in such environments, we introduced a novel syntactic rule-based approach to affect recognition from text. Our Affect Analysis Model follows the compositionality principle, according to which emotional meaning of a sentence is determined by composing parts that correspond to lexical units or other linguistic constituent types governed by the rules of aggregation, propagation, domination, neutralization, and intensification, at various grammatical levels. The proposed rule-based approach processes each sentence in sequential stages, including symbolic cue processing, detection and transformation of abbreviations, sentence parsing, and word/phrase/sentence-level analyses. Our method is capable of processing sentences of different complexity, including simple, compound, complex (with complement and relative clauses), and complex-compound sentences. Affect in text is classified into nine emotion categories (or neutral), and, additionally, information that indicates social communicative behaviour is identified. The evaluation of the Affect Analysis Model algorithm showed promising results regarding its capability to accurately recognize affective information in text from an existing corpus of informal online conversations. The applications of the developed Affect Analysis Model in Instant Messaging system (AffectIM) and in Second Life (EmoHeart, iFeel_IM!) are described in the chapter.
UR - http://www.scopus.com/inward/record.url?scp=84865779796&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865779796&partnerID=8YFLogxK
M3 - Chapter
AN - SCOPUS:84865779796
SN - 9783642126031
VL - 2010
T3 - Smart Innovation, Systems and Technologies
SP - 179
EP - 207
BT - Smart Innovation, Systems and Technologies
ER -