Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: Expanding the functional horizon of polyimides

Kenichi Oyaizu, Akihiko Hatemata, Wonsung Choi, Hiroyuki Nishide*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

77 Citations (Scopus)

Abstract

The reversible n-type charge-storage capability of polyimides was significantly enhanced in a polyimide/carbon nanocomposite prepared by cyclodehydration of the corresponding polyamic acid which was solution-processed into a composite layer on an electrode surface with a vapor-grown carbon nanofiber. The stepwise preparation process gave the first polyimide-based electrode-active material with a sufficient dispersion of the polyimide particles at the carbon nanofiber surface, while a simple grinding of the polyimide and the carbon nanofiber gave mixtures without charge retention capability due to gradual dissolution in the reduced state. The polyimide/carbon nanocomposites were characterized by negative redox potentials at -1.36 and -0.76 V vs. Ag/AgCl for poly(4,4′-oxydiphthalimido-1,4-phenylene) (1) and poly(pyromellitimido-1,4-phenylene) (2), respectively, which corresponded to a charging per repeating unit of the neutral polymers to radical polyanions. The 2/carbon nanocomposite underwent further reduction at -1.34 V to produce a dianion per repeating unit, giving rise to a high-density charging with a redox capacity of 185 mAh g-1 based on the formula weight of 2. The typical redox capacity of the electrolyzed nanocomposites amounted to ca. 60% of the formula weight-based capacity, which was still larger than those of typical redox polymers with negative potentials, such as viologen-based polyelectrolytes. Additional advantages originated from the robustness of the polyimide framework, which allowed excellent charging/discharging cyclability. The polyimide/carbon nanocomposite electrodes would be highly promising as anode-active materials in organic rechargeable devices, owing to these excellent redox properties.

Original languageEnglish
Pages (from-to)5404-5410
Number of pages7
JournalJournal of Materials Chemistry
Volume20
Issue number26
DOIs
Publication statusPublished - 2010 Jul 14

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: Expanding the functional horizon of polyimides'. Together they form a unique fingerprint.

Cite this