TY - JOUR
T1 - Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials
T2 - Expanding the functional horizon of polyimides
AU - Oyaizu, Kenichi
AU - Hatemata, Akihiko
AU - Choi, Wonsung
AU - Nishide, Hiroyuki
PY - 2010/7/14
Y1 - 2010/7/14
N2 - The reversible n-type charge-storage capability of polyimides was significantly enhanced in a polyimide/carbon nanocomposite prepared by cyclodehydration of the corresponding polyamic acid which was solution-processed into a composite layer on an electrode surface with a vapor-grown carbon nanofiber. The stepwise preparation process gave the first polyimide-based electrode-active material with a sufficient dispersion of the polyimide particles at the carbon nanofiber surface, while a simple grinding of the polyimide and the carbon nanofiber gave mixtures without charge retention capability due to gradual dissolution in the reduced state. The polyimide/carbon nanocomposites were characterized by negative redox potentials at -1.36 and -0.76 V vs. Ag/AgCl for poly(4,4′-oxydiphthalimido-1,4-phenylene) (1) and poly(pyromellitimido-1,4-phenylene) (2), respectively, which corresponded to a charging per repeating unit of the neutral polymers to radical polyanions. The 2/carbon nanocomposite underwent further reduction at -1.34 V to produce a dianion per repeating unit, giving rise to a high-density charging with a redox capacity of 185 mAh g-1 based on the formula weight of 2. The typical redox capacity of the electrolyzed nanocomposites amounted to ca. 60% of the formula weight-based capacity, which was still larger than those of typical redox polymers with negative potentials, such as viologen-based polyelectrolytes. Additional advantages originated from the robustness of the polyimide framework, which allowed excellent charging/discharging cyclability. The polyimide/carbon nanocomposite electrodes would be highly promising as anode-active materials in organic rechargeable devices, owing to these excellent redox properties.
AB - The reversible n-type charge-storage capability of polyimides was significantly enhanced in a polyimide/carbon nanocomposite prepared by cyclodehydration of the corresponding polyamic acid which was solution-processed into a composite layer on an electrode surface with a vapor-grown carbon nanofiber. The stepwise preparation process gave the first polyimide-based electrode-active material with a sufficient dispersion of the polyimide particles at the carbon nanofiber surface, while a simple grinding of the polyimide and the carbon nanofiber gave mixtures without charge retention capability due to gradual dissolution in the reduced state. The polyimide/carbon nanocomposites were characterized by negative redox potentials at -1.36 and -0.76 V vs. Ag/AgCl for poly(4,4′-oxydiphthalimido-1,4-phenylene) (1) and poly(pyromellitimido-1,4-phenylene) (2), respectively, which corresponded to a charging per repeating unit of the neutral polymers to radical polyanions. The 2/carbon nanocomposite underwent further reduction at -1.34 V to produce a dianion per repeating unit, giving rise to a high-density charging with a redox capacity of 185 mAh g-1 based on the formula weight of 2. The typical redox capacity of the electrolyzed nanocomposites amounted to ca. 60% of the formula weight-based capacity, which was still larger than those of typical redox polymers with negative potentials, such as viologen-based polyelectrolytes. Additional advantages originated from the robustness of the polyimide framework, which allowed excellent charging/discharging cyclability. The polyimide/carbon nanocomposite electrodes would be highly promising as anode-active materials in organic rechargeable devices, owing to these excellent redox properties.
UR - http://www.scopus.com/inward/record.url?scp=77953823627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953823627&partnerID=8YFLogxK
U2 - 10.1039/c0jm00042f
DO - 10.1039/c0jm00042f
M3 - Article
AN - SCOPUS:77953823627
SN - 0959-9428
VL - 20
SP - 5404
EP - 5410
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
IS - 26
ER -