Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone

Kazufumi Yamamoto*, Tomohiro Nakatsuji, Yuichiro Yaoi, Yu Yamato, Takahiko Yanagitani, Mami Matsukawa, Kaoru Yamazaki, Yukihiro Matsuyama

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Quantitative ultrasound (QUS) is now widely used for evaluating bone in vivo, because obtained ultrasonic wave properties directly reflect the visco-elasticity. Bone tissue is composed of minerals like hydroxyapatite (HAp) and a collagen matrix. HAp crystallites orientation is thus one parameter of bone elasticity. In this study, we experimentally investigated the anisotropy of ultrasonic wave velocity and the HAp crystallites orientation in the axial-radial and axial-tangential planes in detail, using cylindrical specimens obtained from the cortical bone of three bovine femurs. Longitudinal bulk wave propagation was investigated by using a conventional ultrasonic pulse system. We used the one cycle of sinusoidal pulse which was emitted from wide band transmitter. The nominal frequency of the pulse was 1 MHz. First, we investigated the anisotropy of longitudinal wave velocity, measuring the anisotropy of velocity in two planes using cylindrical specimens obtained from identical bone areas. The wave velocity changed due to the rotation angle, showing the maximum value in the direction a little off the bone axis. Moreover, X-ray pole figure measurements also indicated that there were small tilts in the HAp crystallites orientation from the bone axis. The tilt angles were similar to those of the highest velocity direction. There were good correlations between velocity and HAp crystallites orientation obtained in different directions. However, a comparatively low correlation was found in posterior bone areas, which shows the stronger effects of bone microstructure. In the radial-tangential plane, where the HAp crystallites hardly ever align, weak anisotropy of velocity was found which seemed to depend on the bone microstructure.

Original languageEnglish
Pages (from-to)377-386
Number of pages10
Issue number3
Publication statusPublished - 2012 Mar
Externally publishedYes


  • Bovine bone
  • Cortical bone
  • Hydroxyapatite (HAp)
  • Longitudinal wave velocity
  • Quantitative ultrasound (QUS)

ASJC Scopus subject areas

  • Acoustics and Ultrasonics


Dive into the research topics of 'Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone'. Together they form a unique fingerprint.

Cite this