TY - GEN
T1 - Relaxed stratification
T2 - 24th European Symposium on Programming, ESOP 2015 held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015
AU - Terauchi, Tachio
AU - Unno, Hiroshi
N1 - Funding Information:
This work was supported by MEXT Kakenhi 23220001, 26330082, 25280023, and 25730035.
Publisher Copyright:
© Springer-Verlag Berlin Heidelberg 2015.
PY - 2015
Y1 - 2015
N2 - In counterexample-guided abstraction refinement, a predicate refinement scheme is said to be complete for a given theory if it is guaranteed to eventually find predicates sufficient to prove the given property, when such exist. However, existing complete methods require deciding if a proof of the counterexample’s spuriousness exists in some finite language of predicates. Such an exact finite-language-restricted predicate search is quite hard for many theories used in practice and incurs a heavy overhead. In this paper, we address the issue by showing that the language restriction can be relaxed so that the refinement process is restricted to infer proofs from some finite language Lbase ∪ Lext but is only required to return a proof when the counterexample’s spuriousness can be proved in Lbase. Then, we show how a proof-based refinement algorithm can be made to satisfy the relaxed requirement and be complete by restricting only the theory-level reasoning in SMT to emit Lbase -restricted partial interpolants (while such an approach has been proposed previously, we show for the first time that it can be done for languages that are not closed under conjunctions and disjunctions). We also present a technique that uses a property of counterexample patterns to further improve the efficiency of the refinement algorithm while still satisfying the requirement.We have experimented with a prototype implementation of the new refinement algorithm, and show that it is able to achieve complete refinement with only a small overhead.
AB - In counterexample-guided abstraction refinement, a predicate refinement scheme is said to be complete for a given theory if it is guaranteed to eventually find predicates sufficient to prove the given property, when such exist. However, existing complete methods require deciding if a proof of the counterexample’s spuriousness exists in some finite language of predicates. Such an exact finite-language-restricted predicate search is quite hard for many theories used in practice and incurs a heavy overhead. In this paper, we address the issue by showing that the language restriction can be relaxed so that the refinement process is restricted to infer proofs from some finite language Lbase ∪ Lext but is only required to return a proof when the counterexample’s spuriousness can be proved in Lbase. Then, we show how a proof-based refinement algorithm can be made to satisfy the relaxed requirement and be complete by restricting only the theory-level reasoning in SMT to emit Lbase -restricted partial interpolants (while such an approach has been proposed previously, we show for the first time that it can be done for languages that are not closed under conjunctions and disjunctions). We also present a technique that uses a property of counterexample patterns to further improve the efficiency of the refinement algorithm while still satisfying the requirement.We have experimented with a prototype implementation of the new refinement algorithm, and show that it is able to achieve complete refinement with only a small overhead.
UR - http://www.scopus.com/inward/record.url?scp=84926614878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84926614878&partnerID=8YFLogxK
U2 - 10.1007/978-3-662-46669-8_25
DO - 10.1007/978-3-662-46669-8_25
M3 - Conference contribution
AN - SCOPUS:84926614878
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 610
EP - 633
BT - Programming Languages and Systems - 24th European Symposiumon Programming, ESOP 2015 held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, Proceedings
A2 - Vitek, Jan
PB - Springer Verlag
Y2 - 11 April 2015 through 18 April 2015
ER -