Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats

Satoshi Koba, Takayoshi Yoshida, Naoyuki Hayashi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


We investigated the role played by the exercise pressor reflex in sympathetic regulation of the renal circulation in rats. In mid-collicular decerebrate rats, mean arterial pressure (MAP), heart rate (HR), left renal cortical blood flow (RCBF) and left renal sympathetic nerve activity (RSNA) were recorded before and during 30 s of static contraction of the left triceps surae muscles evoked by electrical stimulation of the tibial nerve, which activates both metabo- and mechanosensitive muscle afferents, and during 30 s of passive stretch of the left Achilles tendon, which selectively activates mechanosensitive muscle afferents. Static contraction (n= 17, +344 ± 34 g developed tension) significantly (P < 0.05) increased MAP (+14 ± 3 mmHg), HR (+6 ± 1 beats min-1) and RSNA (n= 11, +19 ± 5%) and significantly decreased renal cortical vascular conductance (RCVC, n= 11, -11 ± 2%). Passive stretch (n= 20, +378 ± 11 g) also significantly increased MAP (+11 ± 2 mmHg), HR (+7 ± 2 beats min-1) and RSNA (n= 15, +14 ± 4%) and significantly decreased RCVC (n= 11, -12 ± 3%). RCBF showed no significant changes during static contraction or passive stretch. Renal denervation abolished the decrease in RCVC during contraction (n= 12) or stretch (n= 13). These data indicate that both the exercise pressor reflex and its mechanically sensitive component, the muscle mechanoreflex, induced renal cortical vasoconstriction through sympathetic activation in rats.

Original languageEnglish
Pages (from-to)111-119
Number of pages9
JournalExperimental Physiology
Issue number1
Publication statusPublished - 2006 Jan
Externally publishedYes

ASJC Scopus subject areas

  • Physiology
  • Nutrition and Dietetics
  • Physiology (medical)


Dive into the research topics of 'Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats'. Together they form a unique fingerprint.

Cite this