TY - JOUR
T1 - Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats
AU - Koba, Satoshi
AU - Yoshida, Takayoshi
AU - Hayashi, Naoyuki
PY - 2006/1
Y1 - 2006/1
N2 - We investigated the role played by the exercise pressor reflex in sympathetic regulation of the renal circulation in rats. In mid-collicular decerebrate rats, mean arterial pressure (MAP), heart rate (HR), left renal cortical blood flow (RCBF) and left renal sympathetic nerve activity (RSNA) were recorded before and during 30 s of static contraction of the left triceps surae muscles evoked by electrical stimulation of the tibial nerve, which activates both metabo- and mechanosensitive muscle afferents, and during 30 s of passive stretch of the left Achilles tendon, which selectively activates mechanosensitive muscle afferents. Static contraction (n= 17, +344 ± 34 g developed tension) significantly (P < 0.05) increased MAP (+14 ± 3 mmHg), HR (+6 ± 1 beats min-1) and RSNA (n= 11, +19 ± 5%) and significantly decreased renal cortical vascular conductance (RCVC, n= 11, -11 ± 2%). Passive stretch (n= 20, +378 ± 11 g) also significantly increased MAP (+11 ± 2 mmHg), HR (+7 ± 2 beats min-1) and RSNA (n= 15, +14 ± 4%) and significantly decreased RCVC (n= 11, -12 ± 3%). RCBF showed no significant changes during static contraction or passive stretch. Renal denervation abolished the decrease in RCVC during contraction (n= 12) or stretch (n= 13). These data indicate that both the exercise pressor reflex and its mechanically sensitive component, the muscle mechanoreflex, induced renal cortical vasoconstriction through sympathetic activation in rats.
AB - We investigated the role played by the exercise pressor reflex in sympathetic regulation of the renal circulation in rats. In mid-collicular decerebrate rats, mean arterial pressure (MAP), heart rate (HR), left renal cortical blood flow (RCBF) and left renal sympathetic nerve activity (RSNA) were recorded before and during 30 s of static contraction of the left triceps surae muscles evoked by electrical stimulation of the tibial nerve, which activates both metabo- and mechanosensitive muscle afferents, and during 30 s of passive stretch of the left Achilles tendon, which selectively activates mechanosensitive muscle afferents. Static contraction (n= 17, +344 ± 34 g developed tension) significantly (P < 0.05) increased MAP (+14 ± 3 mmHg), HR (+6 ± 1 beats min-1) and RSNA (n= 11, +19 ± 5%) and significantly decreased renal cortical vascular conductance (RCVC, n= 11, -11 ± 2%). Passive stretch (n= 20, +378 ± 11 g) also significantly increased MAP (+11 ± 2 mmHg), HR (+7 ± 2 beats min-1) and RSNA (n= 15, +14 ± 4%) and significantly decreased RCVC (n= 11, -12 ± 3%). RCBF showed no significant changes during static contraction or passive stretch. Renal denervation abolished the decrease in RCVC during contraction (n= 12) or stretch (n= 13). These data indicate that both the exercise pressor reflex and its mechanically sensitive component, the muscle mechanoreflex, induced renal cortical vasoconstriction through sympathetic activation in rats.
UR - http://www.scopus.com/inward/record.url?scp=33645047915&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645047915&partnerID=8YFLogxK
U2 - 10.1113/expphysiol.2005.031666
DO - 10.1113/expphysiol.2005.031666
M3 - Article
C2 - 16210449
AN - SCOPUS:33645047915
SN - 0958-0670
VL - 91
SP - 111
EP - 119
JO - Experimental Physiology
JF - Experimental Physiology
IS - 1
ER -