Review recent advances in nanomaterials for high-performance Li–S batteries

James E. Knoop, Seongki Ahn*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

50 Citations (Scopus)

Abstract

This article reviews nanotechnology as a practical solution for improving lithium-sulfur batteries. Lithium-sulfur batteries have been widely examined because sulfur has many advantageous properties such as a high crustal abundance, low environmental impact, low cost, high gravimetric (2600 W h kg−1) and volumetric (2800 W h L−1) energy densities, assuming complete conversion of sulfur to lithium sulfide (Li2S) upon lithiation. However, lithium-sulfur batteries have not yet reach commercialization due to demerits involving the formation of soluble lithium polysulfides (Li2Sn, n = 3–8), low electrical conductivity, and low loading density of sulfur. These issues arise mainly due to the polysulfide shuttle phenomenon and the inherent insulating nature of sulfur. To overcome these issues, strategies have been pursued using nanotechnology applied to porous carbon nanocomposites, hollow one-dimensional carbon nanomaterials, graphene nanocomposites, and three-dimensional carbon nanostructured matrices. This paper aims to review various solutions pertaining to the role of nanotechnology in synthesizing nanoscale and nanostructured materials for advanced and high-performance lithium–sulfur batteries. Furthermore, we highlight perspective research directions for commercialization of lithium–sulfur batteries as a major power source for electric vehicles and large-scale electric energy storage.

Original languageEnglish
Pages (from-to)86-106
Number of pages21
JournalJournal of Energy Chemistry
Volume47
DOIs
Publication statusPublished - 2020 Aug

Keywords

  • 3D nanostructured materials
  • Carbon nanomaterials
  • Lithium–sulfur batteries
  • Nanocomposite sulfur
  • Nanotechnology

ASJC Scopus subject areas

  • Fuel Technology
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Review recent advances in nanomaterials for high-performance Li–S batteries'. Together they form a unique fingerprint.

Cite this