Robotic patch-stabilizer using wire driven mechanism for minimally invasive fetal surgery

Bo Zhang*, Yo Kobayashi, Toshio Chiba, Masakatsu G. Fujie

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Citations (Scopus)

Abstract

The clinical target of this study is intrauterine patch coverage of fetal myelomeningocele. We propose a new surgical robotic system for intrauterine fetal surgery with patch-stabilizer and laser manipulator. The target disease of the fetal surgery is spina bifida or myelomeningocele, which is incomplete closure in the spinal column and one of the common fetal diseases. In the fetal surgery, the collagen patch is supposed to be stabilized onto the fragile fetal tissue during the laser fixation process. In this study, a prototype of the patch-stabilizer using wire driven mechanism has been developed for precise force control on the patch without damaging fetal tissue. The diameter of the patch-stabilizer's shaft is 2.4 mm. The patch-stabilizer including one ball joint and wire driven mechanism is able to bend through 40 degrees. The stabilizing part holds collagen patch with diamond shape mechanism using wire driven. In this paper, we showed that the patch-stabilizer is developed with the stabilizing force control using the tension control of wires. Results of the experiment showed that the tension of driven wires was controlled at 0.3 N to stabilize the collagen patch onto the lesion surface without the damages of fetal tissues and the influence by the amnion liquid.

Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages5076-5079
Number of pages4
ISBN (Print)9781424432967
DOIs
Publication statusPublished - 2009
Externally publishedYes
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: 2009 Sept 22009 Sept 6

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period09/9/209/9/6

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • Medicine(all)

Fingerprint

Dive into the research topics of 'Robotic patch-stabilizer using wire driven mechanism for minimally invasive fetal surgery'. Together they form a unique fingerprint.

Cite this