Role of intrinsic disorder in the structural phase transition of magnetoelectric EuTiO 3

Mattia Allieta*, Marco Scavini, Leszek J. Spalek, Valerio Scagnoli, Helen C. Walker, Christos Panagopoulos, Siddharth S. Saxena, Takuro Katsufuji, Claudio Mazzoli

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

97 Citations (Scopus)


Up to now, the crystallographic structure of the magnetoelectric perovskite EuTiO 3 has been considered to remain cubic down to low temperature. Here we present high-resolution synchrotron x-ray powder-diffraction data showing the existence of a structural phase transition, from cubic Pm-3m to tetragonal I4/mcm, involving TiO 6 octahedra tilting, in analogy to the case of SrTiO 3. The temperature evolution of the tilting angle and of the full width at half maximum of the (200) cubic reflection family indicate a critical temperature T c = 235 K. This critical temperature is well below the recent anomaly reported by specific-heat measurement at T A ∼ 282 K. By performing atomic pair distribution function analysis on diffraction data, we provide evidence of a mismatch between the local (short-range) and the average crystallographic structures in this material. Below the estimated T c, the average model symmetry is fully compatible with the local environment distortion, but the former is characterized by a reduced value of the tilting angle compared to the latter. At T = 240 K, data show the presence of local octahedra tilting identical to the low-temperature one, while the average crystallographic structure remains cubic. On this basis, we propose that intrinsic lattice disorder is of fundamental importance in the understanding of EuTiO 3 properties.

Original languageEnglish
Article number184107
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number18
Publication statusPublished - 2012 May 18

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Role of intrinsic disorder in the structural phase transition of magnetoelectric EuTiO 3'. Together they form a unique fingerprint.

Cite this