TY - JOUR
T1 - Sarcomere length-dependent Ca 2+ activation in skinned rabbit psoas muscle fibers
T2 - Coordinated regulation of thin filament cooperative activation and passive force
AU - Fukuda, Norio
AU - Inoue, Takahiro
AU - Yamane, Mitsunori
AU - Terui, Takako
AU - Kobirumaki, Fuyu
AU - Ohtsuki, Iwao
AU - Ishiwata, Shin'ichi
AU - Kurihara, Satoshi
PY - 2011/11
Y1 - 2011/11
N2 - In skeletal muscle, active force production varies as a function of sarcomere length (SL). It has been considered that this SL dependence results simply from a change in the overlap length between the thick and thin filaments. The purpose of this study was to provide a systematic understanding of the SL-dependent increase in Ca 2+ sensitivity in skeletal muscle, by investigating how thin filament "on-off" switching and passive force are involved in the regulation. Rabbit psoas muscles were skinned, and active force measurements were taken at various Ca 2+ concentrations with single fibers, in the short (2.0 and 2.4 μm) and long (2.4 and 2.8 μm) SL ranges. Despite the same magnitude of SL elongation, the SLdependent increase in Ca 2+ sensitivity was more pronounced in the long SL range. MgADP (3 mM) increased the rate of rise of active force and attenuated SL-dependent Ca 2+ activation in both SL ranges. Conversely, inorganic phosphate (Pi, 20 mM) decreased the rate of rise of active force and enhanced SL-dependent Ca 2+ activation in both SL ranges. Our analyses revealed that, in the absence and presence of MgADP or Pi, the magnitude of SL-dependent Ca 2+ activation was (1) inversely correlated with the rate of rise of active force, and (2) in proportion to passive force. These findings suggest that the SL dependence of active force in skeletal muscle is regulated via thin filament "on-off" switching and titin (connectin)-based interfilament lattice spacing modulation in a coordinated fashion, in addition to the regulation via the filament overlap.
AB - In skeletal muscle, active force production varies as a function of sarcomere length (SL). It has been considered that this SL dependence results simply from a change in the overlap length between the thick and thin filaments. The purpose of this study was to provide a systematic understanding of the SL-dependent increase in Ca 2+ sensitivity in skeletal muscle, by investigating how thin filament "on-off" switching and passive force are involved in the regulation. Rabbit psoas muscles were skinned, and active force measurements were taken at various Ca 2+ concentrations with single fibers, in the short (2.0 and 2.4 μm) and long (2.4 and 2.8 μm) SL ranges. Despite the same magnitude of SL elongation, the SLdependent increase in Ca 2+ sensitivity was more pronounced in the long SL range. MgADP (3 mM) increased the rate of rise of active force and attenuated SL-dependent Ca 2+ activation in both SL ranges. Conversely, inorganic phosphate (Pi, 20 mM) decreased the rate of rise of active force and enhanced SL-dependent Ca 2+ activation in both SL ranges. Our analyses revealed that, in the absence and presence of MgADP or Pi, the magnitude of SL-dependent Ca 2+ activation was (1) inversely correlated with the rate of rise of active force, and (2) in proportion to passive force. These findings suggest that the SL dependence of active force in skeletal muscle is regulated via thin filament "on-off" switching and titin (connectin)-based interfilament lattice spacing modulation in a coordinated fashion, in addition to the regulation via the filament overlap.
KW - Ca
KW - Muscle mechanics
KW - Sensitivity
KW - Titin
KW - Troponin
UR - http://www.scopus.com/inward/record.url?scp=84855994988&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855994988&partnerID=8YFLogxK
U2 - 10.1007/s12576-011-0173-8
DO - 10.1007/s12576-011-0173-8
M3 - Article
C2 - 21901640
AN - SCOPUS:84855994988
SN - 1880-6546
VL - 61
SP - 515
EP - 523
JO - Journal of Physiological Sciences
JF - Journal of Physiological Sciences
IS - 6
ER -