Scalable Personalised Item Ranking through Parametric Density Estimation

Riku Togashi, Masahiro Kato, Mayu Otani, Tetsuya Sakai, Shin'ichi Satoh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Learning from implicit feedback is challenging because of the difficult nature of the one-class problem: we can observe only positive examples. Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem. However, such methods have two main drawbacks particularly in large-scale applications; (1) the pairwise approach is severely inefficient due to the quadratic computational cost; and (2) even recent model-based samplers (e.g. IRGAN) cannot achieve practical efficiency due to the training of an extra model. In this paper, we propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart while performing similarly to the pairwise counterpart in terms of ranking effectiveness. Our approach estimates the probability densities of positive items for each user within a rich class of distributions, viz. exponential family. In our formulation, we derive a loss function and the appropriate negative sampling distribution based on maximum likelihood estimation. We also develop a practical technique for risk approximation and a regularisation scheme. We then discuss that our single-model approach is equivalent to an IRGAN variant under a certain condition. Through experiments on real-world datasets, our approach outperforms the pointwise and pairwise counterparts in terms of effectiveness and efficiency.

Original languageEnglish
Title of host publicationSIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc
Pages921-931
Number of pages11
ISBN (Electronic)9781450380379
DOIs
Publication statusPublished - 2021 Jul 11
Event44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021 - Virtual, Online, Canada
Duration: 2021 Jul 112021 Jul 15

Publication series

NameSIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021
Country/TerritoryCanada
CityVirtual, Online
Period21/7/1121/7/15

Keywords

  • collaborative filtering
  • implicit feedback
  • learning to rank
  • personalised recommendation

ASJC Scopus subject areas

  • Software
  • Computer Graphics and Computer-Aided Design
  • Information Systems

Fingerprint

Dive into the research topics of 'Scalable Personalised Item Ranking through Parametric Density Estimation'. Together they form a unique fingerprint.

Cite this