Screening of X-ray responsive substances for the next generation of radiosensitizers

Akihiro Moriyama, Takema Hasegawa, Lei Jiang, Hitoshi Iwahashi, Takashi Mori, Junko Takahashi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


X-ray responsivity resulting in the generation of reactive oxygen species (ROS) was investigated in 9600 organic compounds that were selected by considering their structural diversity. We focused on superoxides that were primarily detected using dihydroethidium (DHE) and hydroxyl radicals, that were identified fluorometrically using 3’-(p-aminophenyl) Fluorescein (APF). Many organic compounds were discovered that responded to the DHE and/or APF assay using X-ray irradiation. These results suggest that some of these organic compounds emit either superoxides or hydroxyl radicals whereas others emit both under the influence of X-ray irradiation. The response of the derivatives of a hit compound with a partial change in the structure was also investigated. The products produced from DHE by X-ray irradiation were identified by HPLC to confirm the integrity of the process. Although, the reactions were suppressed by the superoxide dismutase (SOD), not only 2-hydroxyethidium (2-OH-E+), but also ethidium (E+) were detected. The results suggest that apart from a direct reaction, an indirect reaction may occur between DHE and the superoxides. Although X-ray responsiveness could not be inferred due to the molecular complexity of the investigated compounds, delineation of these reactions will facilitate the development of the next generation of radiosensitizers.

Original languageEnglish
Article number18163
JournalScientific reports
Issue number1
Publication statusPublished - 2019 Dec 1
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Screening of X-ray responsive substances for the next generation of radiosensitizers'. Together they form a unique fingerprint.

Cite this