TY - JOUR
T1 - Selection of the magnetic quantum number in resonant ionization of neon using an XUV-IR two-color laser field
AU - Patchkovskii, Serguei
AU - Vrakking, Marc J.J.
AU - Villeneuve, D. M.
AU - Niikura, Hiromichi
N1 - Publisher Copyright:
© 2020 IOP Publishing Ltd.
PY - 2020/7/14
Y1 - 2020/7/14
N2 - A recent experiment (Villeneuve et al 2017 Science 356 1150) has shown that two-color photoionization of neon by the combination of an attosecond XUV pulse train and a moderately strong, linearly polarized IR pulse can preferentially produce photoelectrons with orbital angular quantum number l = 3 (f-wave) and magnetic quantum number m = 0. This result was rationalized by the occurrence of different Stark shifts of m = 0 and |m| = 1 sub-levels in the IR laser field. Here we perform 3D time-dependent Schrödinger equation calculations with a neon effective potential to identify the mechanism for the selective excitation and ionization of m = 0 sub-levels. Calculations of the ionization and excitation yields as a function of the IR intensity and the XUV and IR photon energy reveal that a coupling between two dominant ionization channels involving 3p and 3d intermediate excitations is responsible for the observed m-level selectivity. We compare calculated and measured photoelectron velocity map images and ionization yields over a range of IR intensities and XUV and IR photon energies, and confirm that the m = 0 or |m| = 1 channel, and thus a single set of the quantum numbers, (J ion, l, m), can be selected by an appropriate choice of these parameters.
AB - A recent experiment (Villeneuve et al 2017 Science 356 1150) has shown that two-color photoionization of neon by the combination of an attosecond XUV pulse train and a moderately strong, linearly polarized IR pulse can preferentially produce photoelectrons with orbital angular quantum number l = 3 (f-wave) and magnetic quantum number m = 0. This result was rationalized by the occurrence of different Stark shifts of m = 0 and |m| = 1 sub-levels in the IR laser field. Here we perform 3D time-dependent Schrödinger equation calculations with a neon effective potential to identify the mechanism for the selective excitation and ionization of m = 0 sub-levels. Calculations of the ionization and excitation yields as a function of the IR intensity and the XUV and IR photon energy reveal that a coupling between two dominant ionization channels involving 3p and 3d intermediate excitations is responsible for the observed m-level selectivity. We compare calculated and measured photoelectron velocity map images and ionization yields over a range of IR intensities and XUV and IR photon energies, and confirm that the m = 0 or |m| = 1 channel, and thus a single set of the quantum numbers, (J ion, l, m), can be selected by an appropriate choice of these parameters.
UR - http://www.scopus.com/inward/record.url?scp=85086991239&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086991239&partnerID=8YFLogxK
U2 - 10.1088/1361-6455/ab82e0
DO - 10.1088/1361-6455/ab82e0
M3 - Article
AN - SCOPUS:85086991239
SN - 0953-4075
VL - 53
JO - Journal of Physics B: Atomic, Molecular and Optical Physics
JF - Journal of Physics B: Atomic, Molecular and Optical Physics
IS - 13
M1 - 134002
ER -