Self delta-equivalence for links whose Milnor's isotopy invariants vanish

Akira Yasuhara*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

For an n-component link, Milnor's isotopy invariants are defined for eachmulti-index I = i1i2⋯im (i j ∈ {1,⋯,n}). Here m is called the length. Let r(I) denote the maximum number of times that any index appears in I. It is known that Milnor invariants with r = 1, i.e., Milnor invariants for all multi-indices I with r(I) = 1, are link-homotopy invariant. N. Habegger and X. S. Lin showed that two string links are link-homotopic if and only if their Milnor invariants with r = 1 coincide. This gives us that a link in S3 is link-homotopic to a trivial link if and only if all Milnor invariants of the link with r = 1 vanish. Although Milnor invariants with r = 2 are not link-homotopy invariants, T. Fleming and the author showed that Milnor invariants with r ≤ 2 are self Δ-equivalence invariants. In this paper, we give a self Δ-equivalence classification of the set of n-component links in S3 whose Milnor invariants withlength ≤ 2n - 1 and r ≤ 2 vanish. As a corollary, we have that a link is self Δ-equivalent to a trivial link if and only if all Milnor invariants of the link with r ≤ 2 vanish. This is a geometric characterization for links whose Milnor invariants with r ≤ 2 vanish. The chief ingredient in our proof is Habiro's clasper theory. We also give an alternate proof of a link-homotopy classification of string links by using clasper theory.

Original languageEnglish
Pages (from-to)4721-4749
Number of pages29
JournalTransactions of the American Mathematical Society
Volume361
Issue number9
DOIs
Publication statusPublished - 2009 Sept
Externally publishedYes

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Self delta-equivalence for links whose Milnor's isotopy invariants vanish'. Together they form a unique fingerprint.

Cite this