Abstract
In order to explain the excitation properties of (Formula presented) transition-metal oxides in a unified framework, we have performed second-order perturbation calculations of the self-energy corrections around the unrestricted Hartree-Fock solution of lattice models using the electronic-structure parameters deduced from photoemission spectroscopy. The self-energy modifies the magnitude of the band gap and causes substantial spectral weight transfer over a wide energy range both in insulating and metallic compounds of the Mott-Hubbard type as well as of the charge-transfer type, resulting in an improved agreement between theory and experiment.
Original language | English |
---|---|
Pages (from-to) | R4201-R4204 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 53 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1996 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics