TY - JOUR
T1 - Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis
AU - Kikuchi, Hiroto
AU - Wako, Hiroshi
AU - Yura, Kei
AU - Go, Mitiko
AU - Mimuro, Mamoru
N1 - Funding Information:
This work was supported in part by financial aid from the Ministry of Education, Science, Sports, and Culture, Japan Grants 08309010, 10440240, and 11874119 (to M.M.) and 07280101 (to H.W.).
PY - 2000
Y1 - 2000
N2 - Phycobiliproteins are basic building blocks of phycobilisomes, a supra-molecular assembly for the light-capturing function of photosynthesis in cyanobacteria and red algae. One functional form of phycobiliproteins is a trimeric form consisting of three identical units having C3 symmetry, with each unit composed of two kinds of subunits, the α-subunit and β-subunit. These subunits have similar chain folds and can be divided into either globin-like or X-Y helices domains. We studied the significance of this two-domain structure for their assembled structures and biological function (light-absorption) using a normal mode analysis to investigate dynamic aspects of their three-dimensional structures. We used C-phycocyanin (C-PC) as an example, and focused on the interactions between the two domains. The normal mode analysis was carried out for the following two cases: 1) The whole subunit, including the two domains; And 2) the globin-like domain alone. By comparing the dynamic properties, such as correlative movements between residues and the fluctuations of individual residues, we found that the X-Y helices domain plays an important role not only in the C3 symmetry assemblies of the subunits in phycobiliproteins, but also in stabilizing the light absorption property by suppressing the fluctuation of the specific Asp residues near the chromophore. Interestingly, the conformation of the X-Y helices domain corresponds to that of a module in pyruvate phosphate dikinase (PPDK). The module in PPDK is involved in the interactions of two domains, just as the X-Y helices domain is involved in the interactions of two subunits. Finally, we discuss the mechanical construction of the C-PC subunits based on the normal mode analysis.
AB - Phycobiliproteins are basic building blocks of phycobilisomes, a supra-molecular assembly for the light-capturing function of photosynthesis in cyanobacteria and red algae. One functional form of phycobiliproteins is a trimeric form consisting of three identical units having C3 symmetry, with each unit composed of two kinds of subunits, the α-subunit and β-subunit. These subunits have similar chain folds and can be divided into either globin-like or X-Y helices domains. We studied the significance of this two-domain structure for their assembled structures and biological function (light-absorption) using a normal mode analysis to investigate dynamic aspects of their three-dimensional structures. We used C-phycocyanin (C-PC) as an example, and focused on the interactions between the two domains. The normal mode analysis was carried out for the following two cases: 1) The whole subunit, including the two domains; And 2) the globin-like domain alone. By comparing the dynamic properties, such as correlative movements between residues and the fluctuations of individual residues, we found that the X-Y helices domain plays an important role not only in the C3 symmetry assemblies of the subunits in phycobiliproteins, but also in stabilizing the light absorption property by suppressing the fluctuation of the specific Asp residues near the chromophore. Interestingly, the conformation of the X-Y helices domain corresponds to that of a module in pyruvate phosphate dikinase (PPDK). The module in PPDK is involved in the interactions of two domains, just as the X-Y helices domain is involved in the interactions of two subunits. Finally, we discuss the mechanical construction of the C-PC subunits based on the normal mode analysis.
UR - http://www.scopus.com/inward/record.url?scp=0033856299&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033856299&partnerID=8YFLogxK
U2 - 10.1016/S0006-3495(00)76409-5
DO - 10.1016/S0006-3495(00)76409-5
M3 - Article
C2 - 10969019
AN - SCOPUS:0033856299
SN - 0006-3495
VL - 79
SP - 1587
EP - 1600
JO - Biophysical Journal
JF - Biophysical Journal
IS - 3
ER -