Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV

A. Favrel, A. Müller, C. Landry, K. Yamamoto, F. Avellan

Research output: Contribution to journalConference articlepeer-review

4 Citations (Scopus)

Abstract

Francis turbines operating at part load conditions experience the development of a high swirling flow at the runner outlet, giving rise to the development of a cavitation precessing vortex rope in the draft tube. The latter acts as an excitation source for the hydro-mechanical system and may jeopardize the system stability if resonance conditions are met. Although many aspects of the part load issue have been widely studied in the past, the accurate stability analysis of hydro-power plants remains challenging. A better understanding of the vortex rope dynamics in a wide range of operating conditions is an important step towards the prediction and the transposition of the pressure fluctuations from reduced to prototype scale. For this purpose, an investigation of the flow velocity fields at the outlet of a Francis turbine reduced scale physical model operating at part load conditions is performed by means of 2D-PIV in three different horizontal cross-sections of the draft tube cone. The measurements are performed in cavitation-free conditions for three values of discharge factor, comprised between 60% and 81% of the value at the Best Efficiency Point. The present article describes a detailed methodology to properly recover the evolution of the velocity fields during one precession cycle by means of phase averaging. The vortex circulation is computed and the vortex trajectory over one typical precession period is finally recovered for each operating point. It is notably shown that below a given value of the discharge factor, the vortex dynamics abruptly change and loose its periodicity and coherence.

Original languageEnglish
Article number082011
JournalIOP Conference Series: Earth and Environmental Science
Volume49
Issue number8
DOIs
Publication statusPublished - 2016 Dec 13
Externally publishedYes
Event28th IAHR Symposium on Hydraulic Machinery and Systems, IAHR 2016 - Grenoble, France
Duration: 2016 Jul 42016 Jul 8

ASJC Scopus subject areas

  • Environmental Science(all)
  • Earth and Planetary Sciences(all)

Fingerprint

Dive into the research topics of 'Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV'. Together they form a unique fingerprint.

Cite this