Abstract
We developed a new speaker verification system that is robust to intra-speaker variation. There is a strong likelihood that intra-speaker variations will occur due to changes in talking styles, the periods when an individual speaks, and so on. It is well known that such variation generally degrades the performance of speaker verification systems. To solve this problem, we applied multiple kernel learning (MKL) based on conditional entropy minimization, which impose the data to be compactly aggregated for each speaker class and ensure that the different speaker classes were far apart from each other. Experimental results showed that the proposed speaker verification system achieved a robust performance to intra-speaker variation derived from changes in the talking styles compared to the conventional maximum margin-based system.
Original language | English |
---|---|
Pages (from-to) | 2741-2744 |
Number of pages | 4 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Publication status | Published - 2011 |
Event | 12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011 - Florence, Italy Duration: 2011 Aug 27 → 2011 Aug 31 |
Keywords
- Intra-speaker variation
- MCEM
- Multiple kernel learning
- Speaker verification
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modelling and Simulation