Abstract
Asymptotic properties of nearly half-filled one-dimensional conductors coupled with phonons are studied through a renormalization-group method. Due to spin-charge coupling via an electron-phonon interaction, the spin correlation varies with filling as well as the charge correlation. Depending on the relation between cutoff energy scales of the umklapp process and of the electron-phonon interaction, various phases appear. We find a metallic phase with a spin gap and a dominant charge-density-wave correlation near half filling between a gapless density-wave phase (like in the doped repulsive Hubbard model) and a superconductor phase with a spin gap. The spin gap is produced by phonon-assisted backward scatterings that interfere with the umklapp process constructively or destructively depending on the character of electron-phonon coupling.
Original language | English |
---|---|
Pages (from-to) | 2410-2420 |
Number of pages | 11 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 54 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1996 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics