Standardization of catalyst preparation using reference catalyst: Ion exchange of mordenite type zeolite, Remarkable dealumination accompanying ion exchange

Naonobu Katada*, Tatsuya Takeguchi, Tatsuya Suzuki, Toshihisa Fukushima, Kinya Inagaki, Setsuo Tokunaga, Hiromichi Shimada, Koichi Sato, Yasunori Oumi, Tsuneji Sano, Kohichi Segawa, Kazuyuki Nakai, Hiroshi Shoji, Peng Wu, Takashi Tatsumi, Takayuki Komatsu, Takao Masuda, Kazunari Domen, Eisuke Yoda, Junko N. KondoToshio Okuhara, Yasuyoshi Kageyama, Miki Niwa, Masaru Ogura, Masahiko Matsukata, Eiichi Kikuchi, Noriyasu Okazaki, Motoi Takahashi, Akio Tada, Shogo Tawada, Yoshihiro Kubota, Yoshihiro Sugi, Yasuhiko Higashio, Masahiko Kamada, Yukiyo Kioka, Kohei Yamamoto, Takayuki Shouji, Yusaku Arima, Yasuaki Okamoto, Hideyuki Matsumoto

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

A joint study was organized to establish a standard set of conditions for the ion exchange of zeolite from sodium into proton-form. The sodium-form mordenite with Si/Al2 = ca. 15 was ion exchanged into an NH4-form, followed by calcination according to various recipes. Then various advanced techniques for characterization (ICP, TG, XPS, SEM, XRD, N2 adsorption, 29Si and 27AlNMR, benzene diffusion, IR of OH and adsorbed pyridine and CO, ammonia TPD) were applied, and some test reactions (cracking of cumene, isopropylation of biphenyl, oligomerization of propene and chichibabin condensation of acetaldehyde and ammonia into picoline) were conducted. The ion exchange (removal of sodium) proceeded as expected, but remarkable differences were observed in physicochemical and catalytic properties of the thus-prepared proton-form samples. Exceptionally high temperature (383 K) for the ion exchange resulted in the structural degradation, while most samples exchanged at 333-353 K maintained the crystallinity and pore volume. The use of NH4Cl slightly changed the crystal morphology. Extra-framework aluminum species was formed on most samples after calcination above 773 K. In contrast, calcination at 673 K maintained the framework aluminum. Therefore, the dealumination is considered to proceed after complete removal of ammonia from the ammonium-form zeolite. However, the proton-form zeolite was stable under dry conditions, so it is speculated that the dealumination was induced by the contact of the proton-form zeolite to atmosphere with humidity. The total and Brønsted acidity decreased with the dealumination, while Lewis acidity increased. On the other hand, rapid heating of the ammonium type zeolite caused narrowing of the micropores. These structural changes seriously affected the catalytic activities for various reactions.

Original languageEnglish
Pages (from-to)63-74
Number of pages12
JournalApplied Catalysis A: General
Volume283
Issue number1-2
DOIs
Publication statusPublished - 2005 Apr 8

Keywords

  • Acidity
  • Catalyst preparation
  • Dealumination
  • Ion exchange
  • Mordenite
  • Reference catalyst
  • Standardization
  • Zeolite

ASJC Scopus subject areas

  • Catalysis
  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'Standardization of catalyst preparation using reference catalyst: Ion exchange of mordenite type zeolite, Remarkable dealumination accompanying ion exchange'. Together they form a unique fingerprint.

Cite this