TY - JOUR
T1 - Structural change induced in TiO2 by swift heavy ions and its application to three-dimensional lithography
AU - Nomura, Ken ichi
AU - Nakanishi, Tetsuya
AU - Nagasawa, Yoshihiro
AU - Ohki, Yoshimichi
AU - Awazu, Koichi
AU - Fujimaki, Makoto
AU - Kobayashi, Naoto
AU - Ishii, Satoshi
AU - Shima, Kunihiro
PY - 2003/8/1
Y1 - 2003/8/1
N2 - A rutile TiO2 single crystal was irradiated by heavy ions with a high energy of the order of several tens of MeV. A good etching selectivity, where only the irradiated surface is well etched by hydrofluoric acid is induced by the irradiation. Through x-ray diffraction and high-resolution electron microscopy, it became clear that the irradiated region lost crystallization. It is considered that this amorphous region and the surrounding region are dissolved in hydrofluoric acid. Through the calculation of the ion energy, it was found that the etching always stopped at the depth where the electronic stopping power of the ion decayed to a critical value of 6.2 keV/nm, regardless of the ion species in the case of I, Br, Cu, and Ti ions. However, in the case of Ca ions with energies higher than about 72 MeV or Cl ions with energies higher than about 77 MeV, the irradiated top surface was not etched with hydrofluoric acid, but the inside surface several μm deep from the irradiated surface was etched. A calculation shows that the critical factor which determines whether the irradiated surface can be etched or not is the lateral energy density on the surface deposited by ions. The etched surface observed by atomic force microscopy is very smooth with a roughness of the order of nm. Therefore, a combination of ion irradiation and etching can be used as a novel fabrication method of nanostructures in rutile.
AB - A rutile TiO2 single crystal was irradiated by heavy ions with a high energy of the order of several tens of MeV. A good etching selectivity, where only the irradiated surface is well etched by hydrofluoric acid is induced by the irradiation. Through x-ray diffraction and high-resolution electron microscopy, it became clear that the irradiated region lost crystallization. It is considered that this amorphous region and the surrounding region are dissolved in hydrofluoric acid. Through the calculation of the ion energy, it was found that the etching always stopped at the depth where the electronic stopping power of the ion decayed to a critical value of 6.2 keV/nm, regardless of the ion species in the case of I, Br, Cu, and Ti ions. However, in the case of Ca ions with energies higher than about 72 MeV or Cl ions with energies higher than about 77 MeV, the irradiated top surface was not etched with hydrofluoric acid, but the inside surface several μm deep from the irradiated surface was etched. A calculation shows that the critical factor which determines whether the irradiated surface can be etched or not is the lateral energy density on the surface deposited by ions. The etched surface observed by atomic force microscopy is very smooth with a roughness of the order of nm. Therefore, a combination of ion irradiation and etching can be used as a novel fabrication method of nanostructures in rutile.
UR - http://www.scopus.com/inward/record.url?scp=0141839781&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141839781&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.68.064106
DO - 10.1103/PhysRevB.68.064106
M3 - Article
AN - SCOPUS:0141839781
SN - 1098-0121
VL - 68
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 6
ER -