Study of knock control in small gasoline engines by multi-dimensional simulation

Kenjiro Nakama, Jin Kusaka, Yasuhiro Daisho

Research output: Contribution to journalConference articlepeer-review

7 Citations (Scopus)

Abstract

To suppress knock in small gasoline engines, the coolant flow of a single-cylinder engine was improved by using two methods: a multi-dimensional knock prediction method combining a Flamelet model with a simple chemical kinetics model, and a method for predicting combustion chamber wall temperature based on a thermal fluid calculation that coupled the engine coolant and the engine structure (engine head, cylinder block, and head gasket). Through these calculations as well as the measurement of wall temperatures and the analysis of combustion by experiments, the effects of wall temperature distribution and consequent unburnt gas temperature distribution on knock onset timing and location were examined. Furthermore, a study was made to develop a method for cooling the head side, which was more effective to suppress knock: the head gasket shape was modified to change the coolant flow and thereby improve the distribution of wall temperatures on the head side.

Original languageEnglish
JournalSAE Technical Papers
DOIs
Publication statusPublished - 2006 Nov 13
EventSAE 2006 Small Engine Technology Conference and Exhibition, SETC 2006 - San Antonio, United States
Duration: 2006 Nov 132006 Nov 16

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Study of knock control in small gasoline engines by multi-dimensional simulation'. Together they form a unique fingerprint.

Cite this