Abstract
In this article, we propose a novel Simultaneous Localization and Mapping (SLAM) method by using a sampling-based approach. FastSLAM is well-known approach as a sampling-based SLAM method. FastSLAM utilizes a theorem that map errors are decidable under a sample of trajectories. From this theorem, FastSLAM samples many trajectories and maps to find a minimum error map. However, in case of constructing a large-scale grid map, FastSLAM becomes unuseful since the method requires huge memory to generate many grid maps. Our proposed method requires only one map that is deformable corresponding to a trajectory. In order to find a minimum error map, our method only generates trajectories. Our method enables construction of a minimum error map by little memory in comparison with original FastSLAM. Experimental results demonstrate our method is able to construct a large-scale 3-D grid map by low memory usage in comparison with original FastSLAM.
Original language | English |
---|---|
Pages (from-to) | 1649-1675 |
Number of pages | 27 |
Journal | Advanced Robotics |
Volume | 26 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2012 Sept 1 |
Externally published | Yes |
Keywords
- 3-D grid map
- FastSLAM
- SL
- mobile robot
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Human-Computer Interaction
- Hardware and Architecture
- Computer Science Applications