Switching kinetics of a Cu2S-based gap-type atomic switch

Alpana Nayak*, Tohru Tsuruoka, Kazuya Terabe, Tsuyoshi Hasegawa, Masakazu Aono

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)


The switching time of a Cu2S-based gap-type atomic switch is investigated as a function of temperature, bias voltage, and initial off-resistance. The gap-type atomic switch is realized using a scanning tunneling microscope (STM), in which the formation and annihilation of a Cu-atom bridge in the vacuum gap between the Cu2S electrode and the Pt tip of the STM are controlled by a solid-electrochemical reaction. Increasing the temperature decreases the switching time exponentially with an activation energy of about 1.38eV. Increasing the bias voltage also shortens the switching time exponentially, exhibiting a greater exponent for the lower bias than for the higher bias. Furthermore, faster switching has been achieved by decreasing the initial off-resistance between the Cu2S electrode and STM tip. On the basis of these results, we suggest that, in addition to the chemical reaction, the electric field in the vacuum gap plays a significant role in the operation of a gap-type atomic switch. This investigation advances our understanding of the operating mechanism of an atomic switch, which is a new concept for future electronic devices.

Original languageEnglish
Article number235201
Issue number23
Publication statusPublished - 2011 Jun 10
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Switching kinetics of a Cu2S-based gap-type atomic switch'. Together they form a unique fingerprint.

Cite this