Abstract
We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe-Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe-Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core-shell nanoprecipitates with a Cu-rich core and a B2 Ni-Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core-shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe-Cu alloys. Reinforcement of the B2 Ni-Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core-shell nanoprecipitates.
Original language | English |
---|---|
Pages (from-to) | 7726-7740 |
Number of pages | 15 |
Journal | Acta Materialia |
Volume | 61 |
Issue number | 20 |
DOIs | |
Publication status | Published - 2013 Dec |
Externally published | Yes |
Keywords
- Alloying effect
- Atom probe tomography
- Fe-Cu alloy
- Precipitation strengthening
- Scanning transmission electron microscopy
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys