Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR

Bo Sook Kim, Makoto Takemasa*, Katsuyoshi Nishinari

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

A new synergistic interaction between tamarind seed xyloglucan and xanthan was found and investigated by rheology, differential scanning calorimetry (DSC), and NMR. The effect of the acetyl and pyruvate groups in the side chain in xanthan on the synergistic interaction was also examined. The shear moduli G′ and G″ of the mixture solution of xyloglucan and native (or acetate-free) xanthan increased steeply at around 22 °C upon cooling. An exothermic DSC peak appeared at the same temperature. A drastic decrease in the T2* of the acetyl and pyruvate groups of the xanthan side chain was observed from 1H NMR spectra only in the mixture at low temperatures (<25 °C). It was found that the pyruvate group is more restricted in the mixture solution compared with the acetyl group. The mixture of xyloglucan and pyruvate-free xanthan showed no synergistic interaction. We concluded that this synergistic interaction is caused by the intermolecular binding between xyloglucan and xanthan, and, in the heterotypic junction zones, the xanthan side chain becomes a new state that is different from both the coil and helix states.

Original languageEnglish
Pages (from-to)1223-1230
Number of pages8
JournalBiomacromolecules
Volume7
Issue number4
DOIs
Publication statusPublished - 2006 Apr
Externally publishedYes

ASJC Scopus subject areas

  • Organic Chemistry
  • Biochemistry, Genetics and Molecular Biology(all)
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR'. Together they form a unique fingerprint.

Cite this