TY - JOUR
T1 - Syneruptive deep magma transfer and shallow magma remobilization during the 2011 eruption of Shinmoe-dake, Japan-Constraints from melt inclusions and phase equilibria experiments
AU - Suzuki, Yuki
AU - Yasuda, Atsushi
AU - Hokanishi, Natsumi
AU - Kaneko, Takayuki
AU - Nakada, Setsuya
AU - Fujii, Toshitsugu
N1 - Funding Information:
We are indebted to the Japan Meteorological Agency for supplying us with a part of ash and rock samples, and details of the eruptive activity. We are grateful to Prof. J. Hirabayashi (Tokyo Institute of Technology) for providing a part of Jan 26pm–27am samples. Mr. Y. Tajima (Nippon Koei Co. Ltd.) and Dr. T. Miyamoto (Tohoku University) are thanked for allowing us to use their unpublished whole-rock geochemical data. We express our thanks to members of the Volcano Research Center at the Earthquake Research Institute for discussions and assistance throughout the course of this research. Finally, the manuscript was greatly improved by insightful comments from Dr. Takeshi Kuritani (Osaka City University), Dr. Caroline Martel (University of Orléans) and Dr. Margaret Mangan (USGS). This work was partly supported by Grants-in-Aid from MEXT to S. Nakada (no. 22900001 ), T. Fujii (no. 22340159 ), and A. Yasuda (no. 23654182 ).
PY - 2013/5/1
Y1 - 2013/5/1
N2 - The 2011 Shinmoe-dake eruption started with a phreatomagmatic eruption (Jan 19), followed by climax sub-Plinian events and subsequent explosions (Jan 26-28), lava accumulation in the crater (end of January), and vulcanian eruptions (February-April). We have studied a suite of ejecta to investigate the magmatic system beneath the volcano and remobilization processes in the silicic magma mush. Most of the ejecta, including brown and gray colored pumice clasts (Jan 26-28), ballistically ejected dense lava (Feb 1), and juvenile particles in ash from the phreatomagmatic and vulcanian events are magma mixing products (SiO2=57-58wt.%; 960-980°C). Mixing occurred between silicic andesite (SA) and basaltic andesite (BA) magmas at a fixed ratio (40%-30% SA and 60%-70% BA). The SA magma had SiO2=62-63wt.% and a temperature of 870°C, and contains 43vol.% phenocrysts of pyroxene, plagioclase, and Fe-Ti oxide. The BA magma had SiO2=55wt.% and a temperature of 1030°C, and contains 9vol.% phenocrysts of olivine and plagioclase. The SA magma partly erupted without mixing as white parts of pumices and juvenile particles.The two magmatic end-members crystallized at different depths, requiring the presence of two separate magma reservoirs; shallower SA reservoir and deeper BA reservoir. An experimental study reveals that the SA magma had been stored at a pressure of 125MPa, corresponding to a depth of 5km. The textures and forms of phenocrysts from the BA magma indicate rapid crystallization directly related to the 2011 eruptive activity. The wide range of H2O contents of olivine melt inclusions (5.5-1.6wt.%) indicates that rapid crystallization was induced by decompression, with olivine crystallization first (≤250MPa), followed by plagioclase addition. The limited occurrence of olivine melt inclusions trapped at depths of <5km is consistent with the proposed magma system model, because olivine crystallization ceased after magma mixing. Our petrological model is consistent with a geophysical model that explains whole crustal deformation as being due to a single source located 7-8km northwest of the Shinmoe-dake summit. However, even the shallowest estimated source of this deformation (7.5-6.2km) is deeper than the SA reservoir, which thus requires a contribution of deeper BA magmas to the observed deformation.Remobilization of mush-like SA magma occurred in two stages before the early sub-Plinian event. Firstly, precursor mixing with BA magma and associated heating occurred (925-871. °C; stage-1 of ≥. 350. h), followed by final mixing with BA magma (stage-2). MgO profiles of magnetite phenocrysts define timescales of 0.7-15.2. h from this final mixing to eruption. The mixed and heated magmas, and stagnant mush that existed in the SA reservoir in the precursor stage, were finally erupted together. Magnetite phenocrysts in the Feb 18 ash reveal the occurrence of continuous erosion of the stagnant mush during the course of the 2011 eruptive activity.
AB - The 2011 Shinmoe-dake eruption started with a phreatomagmatic eruption (Jan 19), followed by climax sub-Plinian events and subsequent explosions (Jan 26-28), lava accumulation in the crater (end of January), and vulcanian eruptions (February-April). We have studied a suite of ejecta to investigate the magmatic system beneath the volcano and remobilization processes in the silicic magma mush. Most of the ejecta, including brown and gray colored pumice clasts (Jan 26-28), ballistically ejected dense lava (Feb 1), and juvenile particles in ash from the phreatomagmatic and vulcanian events are magma mixing products (SiO2=57-58wt.%; 960-980°C). Mixing occurred between silicic andesite (SA) and basaltic andesite (BA) magmas at a fixed ratio (40%-30% SA and 60%-70% BA). The SA magma had SiO2=62-63wt.% and a temperature of 870°C, and contains 43vol.% phenocrysts of pyroxene, plagioclase, and Fe-Ti oxide. The BA magma had SiO2=55wt.% and a temperature of 1030°C, and contains 9vol.% phenocrysts of olivine and plagioclase. The SA magma partly erupted without mixing as white parts of pumices and juvenile particles.The two magmatic end-members crystallized at different depths, requiring the presence of two separate magma reservoirs; shallower SA reservoir and deeper BA reservoir. An experimental study reveals that the SA magma had been stored at a pressure of 125MPa, corresponding to a depth of 5km. The textures and forms of phenocrysts from the BA magma indicate rapid crystallization directly related to the 2011 eruptive activity. The wide range of H2O contents of olivine melt inclusions (5.5-1.6wt.%) indicates that rapid crystallization was induced by decompression, with olivine crystallization first (≤250MPa), followed by plagioclase addition. The limited occurrence of olivine melt inclusions trapped at depths of <5km is consistent with the proposed magma system model, because olivine crystallization ceased after magma mixing. Our petrological model is consistent with a geophysical model that explains whole crustal deformation as being due to a single source located 7-8km northwest of the Shinmoe-dake summit. However, even the shallowest estimated source of this deformation (7.5-6.2km) is deeper than the SA reservoir, which thus requires a contribution of deeper BA magmas to the observed deformation.Remobilization of mush-like SA magma occurred in two stages before the early sub-Plinian event. Firstly, precursor mixing with BA magma and associated heating occurred (925-871. °C; stage-1 of ≥. 350. h), followed by final mixing with BA magma (stage-2). MgO profiles of magnetite phenocrysts define timescales of 0.7-15.2. h from this final mixing to eruption. The mixed and heated magmas, and stagnant mush that existed in the SA reservoir in the precursor stage, were finally erupted together. Magnetite phenocrysts in the Feb 18 ash reveal the occurrence of continuous erosion of the stagnant mush during the course of the 2011 eruptive activity.
KW - Basaltic andesite magma
KW - Diffusion profile
KW - Eruption trigger
KW - Magma mixing
KW - Magma system
KW - Silicic andesite magma
UR - http://www.scopus.com/inward/record.url?scp=84876955123&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876955123&partnerID=8YFLogxK
U2 - 10.1016/j.jvolgeores.2013.03.017
DO - 10.1016/j.jvolgeores.2013.03.017
M3 - Article
AN - SCOPUS:84876955123
SN - 0377-0273
VL - 257
SP - 184
EP - 204
JO - Journal of Volcanology and Geothermal Research
JF - Journal of Volcanology and Geothermal Research
ER -