TY - JOUR
T1 - Synthesis and thermolysis behavior of monoethylpalladium complexes, EtPd(X) (PMe3)2 (X = electronegative ligands)
AU - Kawataka, Futoshi
AU - Kayaki, Yoshihito
AU - Shimizu, Isao
AU - Yamamoto, Akio
PY - 1994
Y1 - 1994
N2 - A series of monoethylpalladium complexes coordinated with various electronegative ligands, irems-[PdEt(X)(PMe3)2], where X = OPh (2a), O2CCH3 (2b), O2CCH2Cl (2c), O2CCHCl2 (2d), O2CCl3 (2e), O2CCH2CH=CH2 (2f), SPh (2g), SCOCH3 (2h), Cl (2i), Br (2j), and I (2k) have been prepared by protonolysis of trans-PdEt2(PMe3)2 with HX or by metathesis of the known monoethylpalladium acetate complex. These complexes were characterized by means of 1H-, 13C{1H}-, and 31P{1H}-NMR, IR, and elemental analysis. Complexes 2a and 2b are thermolyzed in solution with evolution of ethylene whereas complexes 2c-2e and 2g-2k are decomposed with evolution of ethylene and ethane. Kinetic studies on the thermolysis of the ethylpalladium complexes revealed that they decompose according to the first-order rate law in concentration of the palladium complexes. The thermolysis is hindered by addition of X- to the solution. A detailed analysis of the thermolysis revealed that there are two thermolysis routes, one major route involving dissociation of the X ligand to generate an unstable cationic ethylpalladium species that is rapidly thermolyzed, evolving ethylene, and another minor route proceeding from the neutral complex without dissociation of the anionic ligand. Comparison of the rate constant k1 for dissociation of the anionic ligand X from trans-PdEt(X)(PMe3)2 showed that k1 is the smallest for the Cl- ligand dissociation. Activation parameters for the dissociation of the acetate ligand from 2b were found as follows: ΔH‡ = 9.9(±1) kcal/mol, ΔS‡ = -41(±2) cal/(K·mol). The large negative entropy is consistent with a mechanism where dissociation of X is assisted by solvent coordination to generate a solvent-coordinated cationic ethylpalladium complex susceptible to β-H elimination. In fact removal of the chloride ligand on treatment of trans-PdEt(Cl)(PMe3)2 with AgBF4 gave a thermally unstable complex trans-[PdEt(solvent)(PMe3)2]+BF 4
- which is readily decomposed to liberate ethylene above -30°C.
AB - A series of monoethylpalladium complexes coordinated with various electronegative ligands, irems-[PdEt(X)(PMe3)2], where X = OPh (2a), O2CCH3 (2b), O2CCH2Cl (2c), O2CCHCl2 (2d), O2CCl3 (2e), O2CCH2CH=CH2 (2f), SPh (2g), SCOCH3 (2h), Cl (2i), Br (2j), and I (2k) have been prepared by protonolysis of trans-PdEt2(PMe3)2 with HX or by metathesis of the known monoethylpalladium acetate complex. These complexes were characterized by means of 1H-, 13C{1H}-, and 31P{1H}-NMR, IR, and elemental analysis. Complexes 2a and 2b are thermolyzed in solution with evolution of ethylene whereas complexes 2c-2e and 2g-2k are decomposed with evolution of ethylene and ethane. Kinetic studies on the thermolysis of the ethylpalladium complexes revealed that they decompose according to the first-order rate law in concentration of the palladium complexes. The thermolysis is hindered by addition of X- to the solution. A detailed analysis of the thermolysis revealed that there are two thermolysis routes, one major route involving dissociation of the X ligand to generate an unstable cationic ethylpalladium species that is rapidly thermolyzed, evolving ethylene, and another minor route proceeding from the neutral complex without dissociation of the anionic ligand. Comparison of the rate constant k1 for dissociation of the anionic ligand X from trans-PdEt(X)(PMe3)2 showed that k1 is the smallest for the Cl- ligand dissociation. Activation parameters for the dissociation of the acetate ligand from 2b were found as follows: ΔH‡ = 9.9(±1) kcal/mol, ΔS‡ = -41(±2) cal/(K·mol). The large negative entropy is consistent with a mechanism where dissociation of X is assisted by solvent coordination to generate a solvent-coordinated cationic ethylpalladium complex susceptible to β-H elimination. In fact removal of the chloride ligand on treatment of trans-PdEt(Cl)(PMe3)2 with AgBF4 gave a thermally unstable complex trans-[PdEt(solvent)(PMe3)2]+BF 4
- which is readily decomposed to liberate ethylene above -30°C.
UR - http://www.scopus.com/inward/record.url?scp=0000546781&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000546781&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0000546781
SN - 0276-7333
VL - 13
SP - 3517
EP - 3524
JO - Organometallics
JF - Organometallics
IS - 9
ER -