TY - JOUR
T1 - The Bernstein conjecture, minimal cones and critical dimensions
AU - Gibbons, Gary W.
AU - Maeda, Kei Ichi
AU - Miyamoto, Umpei
PY - 2009
Y1 - 2009
N2 - Minimal surfaces and domain walls play important roles in various contexts of spacetime physics as well as material science. In this paper, we first review the Bernstein conjecture, which asserts that a plane is the only globally well-defined solution of the minimal surface equation which is a single valued graph over a hyperplane in flat spaces, and its failure in higher dimensions. Then, we review how minimal cones in four- and higher-dimensional spacetimes, which are curved and even singular at the apex, may be used to provide counterexamples to the conjecture. The physical implications of these counterexamples in curved spacetimes are discussed from various points of view, ranging from classical general relativity, brane physics and holographic models of fundamental interactions.
AB - Minimal surfaces and domain walls play important roles in various contexts of spacetime physics as well as material science. In this paper, we first review the Bernstein conjecture, which asserts that a plane is the only globally well-defined solution of the minimal surface equation which is a single valued graph over a hyperplane in flat spaces, and its failure in higher dimensions. Then, we review how minimal cones in four- and higher-dimensional spacetimes, which are curved and even singular at the apex, may be used to provide counterexamples to the conjecture. The physical implications of these counterexamples in curved spacetimes are discussed from various points of view, ranging from classical general relativity, brane physics and holographic models of fundamental interactions.
UR - http://www.scopus.com/inward/record.url?scp=70349787222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349787222&partnerID=8YFLogxK
U2 - 10.1088/0264-9381/26/18/185008
DO - 10.1088/0264-9381/26/18/185008
M3 - Article
AN - SCOPUS:70349787222
SN - 0264-9381
VL - 26
JO - Classical and Quantum Gravity
JF - Classical and Quantum Gravity
IS - 18
M1 - 185008
ER -