The CALET Gamma-ray Burst Monitor (CGBM)

Kazutaka Yamaoka, Atsumasa Yoshida, Yuki Nonaka, Yoko Sakauchi, Takumi Hara, Tatsuma Yamamoto, Kunishiro Mori, Satoshi Nakahira, Taro Kotani, Yujin E. Nakagawa, Hiroshi Tomida, Shiro Ueno, Tadahisa Tamura, Shoji Torii

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The CALET Gamma-ray Burst Monitor (CGBM) is the secondary scientific instrument of the CALET mission to be attached to the ISS, sensitive to X and gamma-rays from 7 keV to 20 MeV. The scientific goal of the CGBM is to search out a clue to radiation mechanisms of gamma-ray bursts (GRBs) by obtaining very broadband spectra from optical to TeV gamma-rays together with the primary instrument, the calorimeter (CAL) sensitive to GeV-TeV gamma-rays, and the star camera (ASC). The CGBM sensor consists of the hard X-ray monitor (HXM) sensitive to the 7-1000 keV range and the soft gamma-ray monitor (SGM) to 100 keV-20 MeV utilizing two LaBr3 (Ce) and one BGO scintillators. The LaBr3 crystals would be employed first for GRB observations in space. The electonics box (E-box) processing signals from the sensors, is equipped with analog circuits for a wide dynamic range, onboard GRB trigger system, and 10 Mbyte memory for GRB data accumulation. In this paper, we will describe the scientific performance and the development status of the CGBM.

Original languageEnglish
Title of host publicationProceedings of the 32nd International Cosmic Ray Conference, ICRC 2011
PublisherInstitute of High Energy Physics
Pages111-114
Number of pages4
Volume9
DOIs
Publication statusPublished - 2011
Event32nd International Cosmic Ray Conference, ICRC 2011 - Beijing
Duration: 2011 Aug 112011 Aug 18

Other

Other32nd International Cosmic Ray Conference, ICRC 2011
CityBeijing
Period11/8/1111/8/18

Keywords

  • CALET
  • Gamma-ray Burst
  • Instrumentation

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'The CALET Gamma-ray Burst Monitor (CGBM)'. Together they form a unique fingerprint.

Cite this