TY - JOUR
T1 - The complex volumes of twist knots
AU - Cho, Jinseok
AU - Murakami, Jun
AU - Yokota, Yoshiyuki
PY - 2009/10
Y1 - 2009/10
N2 - For a given hyperbolic knot, the third author defined a function whose imaginary part gives the hyperbolic volume of the knot complement. We show that, for a twist knot, the function actually gives the complex volume of the knot complement using Zickert's and Neumann's theory of the extended Bloch groups and the complex volumes.
AB - For a given hyperbolic knot, the third author defined a function whose imaginary part gives the hyperbolic volume of the knot complement. We show that, for a twist knot, the function actually gives the complex volume of the knot complement using Zickert's and Neumann's theory of the extended Bloch groups and the complex volumes.
UR - http://www.scopus.com/inward/record.url?scp=77951028144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951028144&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-09-09906-7
DO - 10.1090/S0002-9939-09-09906-7
M3 - Article
AN - SCOPUS:77951028144
SN - 0002-9939
VL - 137
SP - 3533
EP - 3541
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 10
ER -