The computational capability of chemical reaction automata

Fumiya Okubo*, Takashi Yokomori

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


We propose a new computing model called chemical reaction automata (CRAs) as a simplified variant of reaction automata (RAs) studied in recent literature (Okubo in RAIRO Theor Inform Appl 48:23–38 2014; Okubo et al. in Theor Comput Sci 429:247–257 2012a, Theor Comput Sci 454:206–221 2012b). We show that CRAs in maximally parallel manner are computationally equivalent to Turing machines, while the computational power of CRAs in sequential manner coincides with that of the class of Petri nets, which is in marked contrast to the result that RAs (in both maximally parallel and sequential manners) have the computing power of Turing universality (Okubo 2014; Okubo et al. 2012a). Intuitively, CRAs are defined as RAs without inhibitor functioning in each reaction, providing an offline model of computing by chemical reaction networks (CRNs). Thus, the main results in this paper not only strengthen the previous result on Turing computability of RAs but also clarify the computing powers of inhibitors in RA computation.

Original languageEnglish
Pages (from-to)215-224
Number of pages10
JournalNatural Computing
Issue number2
Publication statusPublished - 2016 Jun 1
Externally publishedYes


  • Chemical reaction automata
  • Chemical reaction networks
  • Reaction automata
  • Turing computability

ASJC Scopus subject areas

  • Computer Science Applications


Dive into the research topics of 'The computational capability of chemical reaction automata'. Together they form a unique fingerprint.

Cite this