TY - JOUR
T1 - The DnaA homolog of the hyperthermophilic eubacterium Thermotoga maritima an open complex with a minimal 149-bp origin region in an ATP-dependent manner
AU - Ozaki, Shogo
AU - Fujimitsu, Kazuyuki
AU - Kurumizaka, Hitoshi
AU - Katayama, Tsutomu
PY - 2006/4
Y1 - 2006/4
N2 - In Escherichia coli, ATP-DnaA, but not ADP-DnaA, forms an initiation complex that undergoes site-specific duplex DNA unwinding, open complex formation. However, it remains unclear how highly the ATP-dependent activation of the initiation factor is conserved in evolution. The hyperthermophile Thermotoga maritima is one of the most ancient eubacteria in evolution. Here, we show that the DnaA homolog (tmaDnaA) of this bacterium forms open complexes with the predicted origin region (tma-oriC) in vitro. Tma DnaA has a strong and specific affinity for ATP/ADP as well as for 12-mer repeating sequences within the tma-oriC. Unlike ADPtma DnaA, ATPtma DnaA ishighly cooperative in DNA binding and forms open complexes in a manner that depends on temperature and the superhelical tension of the tma-oriC-bearing plasmid. The minimal tma-oriC required for unwinding is a 149-bp region containing five repeats of the 12-mer sequence and two AT-rich 9-mer repeats. Tma DnaA-binding to the 12-mer motif provokes DNA bending. The 9-mer region is the duplex-unwinding site. The tma DnaA-binding and unwinding motifs of tma-oriC share sequence homology with corresponding archaeal and eukaryotic sequences. These findings suggest that the ATP-dependent molecular switch of the initiator and the mechanisms in the replication initiation complex are highly conserved in eubacterial evolution.
AB - In Escherichia coli, ATP-DnaA, but not ADP-DnaA, forms an initiation complex that undergoes site-specific duplex DNA unwinding, open complex formation. However, it remains unclear how highly the ATP-dependent activation of the initiation factor is conserved in evolution. The hyperthermophile Thermotoga maritima is one of the most ancient eubacteria in evolution. Here, we show that the DnaA homolog (tmaDnaA) of this bacterium forms open complexes with the predicted origin region (tma-oriC) in vitro. Tma DnaA has a strong and specific affinity for ATP/ADP as well as for 12-mer repeating sequences within the tma-oriC. Unlike ADPtma DnaA, ATPtma DnaA ishighly cooperative in DNA binding and forms open complexes in a manner that depends on temperature and the superhelical tension of the tma-oriC-bearing plasmid. The minimal tma-oriC required for unwinding is a 149-bp region containing five repeats of the 12-mer sequence and two AT-rich 9-mer repeats. Tma DnaA-binding to the 12-mer motif provokes DNA bending. The 9-mer region is the duplex-unwinding site. The tma DnaA-binding and unwinding motifs of tma-oriC share sequence homology with corresponding archaeal and eukaryotic sequences. These findings suggest that the ATP-dependent molecular switch of the initiator and the mechanisms in the replication initiation complex are highly conserved in eubacterial evolution.
UR - http://www.scopus.com/inward/record.url?scp=33645133194&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645133194&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2443.2006.00950.x
DO - 10.1111/j.1365-2443.2006.00950.x
M3 - Article
C2 - 16611245
AN - SCOPUS:33645133194
SN - 1356-9597
VL - 11
SP - 425
EP - 438
JO - Genes to Cells
JF - Genes to Cells
IS - 4
ER -