The effect of canopy structure on soil respiration in an old-growth beech-oak forest in central Japan

Vilanee Suchewaboripont*, Masaki Ando, Yasuo Iimura, Shinpei Yoshitake, Toshiyuki Ohtsuka

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Soil respiration (Rs) is a key component in the estimation of the net ecosystem production (NEP) of old-growth forests, which are generally thought to have ceased carbon accumulation. The objectives of the present study were to characterize the spatial and temporal patterns of Rs, and to identify the determinants of the spatial and temporal variability of Rs, using general linear mixed models (GLMM), in an old-growth beech-oak forest. GLMM analyses identified monthly effect as a significant explanatory variable for temporal variation, as well as gap/canopy and soil water content (SWC) as explanatory variables for spatial variation, in Rs. The complexity of vertical structure in the forest was reflected in the spatial pattern of Rs, which was higher in canopy areas than in gap areas during the growing season, except in November. This spatial pattern was not affected by soil temperature. Moreover, SWC did not differ between gap and canopy areas, although SWC partially explained the spatial heterogeneity in Rs. The carbon:nitrogen ratios of soil organic matter in canopy areas were significantly higher than those in gap areas. Fine root biomass was 1.7-fold greater in canopy areas than in gap areas, likely because of the higher Rs in canopy areas, and root respiration made a much large contribution to Rs than heterotrophic respiration. The different patterns of fine root biomass between gap and canopy areas mainly control the spatial heterogeneity in Rs; thus, it is worth considering the gap/canopy variability in Rs when evaluating annual efflux in old-growth forests.

Original languageEnglish
Pages (from-to)867-877
Number of pages11
JournalEcological Research
Issue number5
Publication statusPublished - 2015 Sept 28
Externally publishedYes


  • Fine root
  • Gap/canopy structure
  • Old-growth forest
  • Soil respiration
  • Spatial variation

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'The effect of canopy structure on soil respiration in an old-growth beech-oak forest in central Japan'. Together they form a unique fingerprint.

Cite this