Abstract
In this paper, we consider the compressible fluid model of Korteweg type which can be used as a phase transition model. It is shown that the system admits a unique, global strong solution for small initial data in R N, 3 ≤ N ≤ 7. In this study, the main tools are the maximal Lp-Lq regularity and Lp-Lq decay properties of solutions to the linearized equations.
Original language | English |
---|---|
Pages (from-to) | 6313-6337 |
Number of pages | 25 |
Journal | SIAM Journal on Mathematical Analysis |
Volume | 52 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2020 Dec 17 |
Keywords
- Global well-posedness
- Long-time behavior
- Maximal regularity
- Navier-Stokes-Korteweg system
ASJC Scopus subject areas
- Analysis
- Computational Mathematics
- Applied Mathematics