TY - JOUR
T1 - The human gonadotropin-inhibitory hormone ortholog RFamide-related peptide-3 suppresses gonadotropin-induced progesterone production in human granulosa cells
AU - Oishi, Hajime
AU - Klausen, Christian
AU - Bentley, George E.
AU - Osugi, Tomohiro
AU - Tsutsui, Kazuyoshi
AU - Gilks, C. Blake
AU - Yano, Tetsu
AU - Leung, Peter C K
PY - 2012/7
Y1 - 2012/7
N2 - RFamide-related peptide-3 (RFRP-3), a mammalian ortholog of avian gonadotropin-inhibitory hormone, has pronounced inhibitory effects on reproduction in a number of species. RFRP-3 suppresses gonadotropin release at the hypothalamic and/or pituitary levels; however, increasing evidence also suggests putative functions within the ovary. We have now demonstrated the expression of both RFRPand its receptor (GPR147) in primary cultures of human granulos a-lute in cells. Immunohistochemical analysis of normal human ovaries from premenopausal women showed that RFRPs and GPR147 were primarily localized in the granulosa cell layer of large preovulatory follicles as well as in the corpus luteum. Treatment of human granulosa-lutein cells with RFRP-3 reduced FSH-, LH- and forskolin-stimulated progesterone production and steroidogenic acute regulatory protein expression but did not affect basal or 8-bromoadenosine 3′5′-cyclic monophosphate stimulated levels. In addition, RFRP-3 inhibited gonadotropin- and forskolin-induced intracellular cAMP accumulation, and these effects were abolished by pretreatment with an inhibitor of inhibitory Gi/o proteins (pertussis toxin). Importantly, the effects of RFRP-3 on FSH-, LH-, and forskolin-induced cAMP and progesterone accumulation were completely eliminated by cotreatment with the bifunctional GPR147/GPR74 antagonist RF9 or by pretreatment with GPR147 small interfering RNA. These results suggest that RFRP-3 is expressed in human granulos a cells in which it acts via its receptor, GPR147, to inhibit gonadotropin signaling at the level of adenylyl cyclase via activation of a pertussis toxin-sensitive Gαi/o protein. This leads to reduced gonadotropin-stimulated cAMP accumulation and progesteronesynthesis, likely via reduced steroidogenic acute regulatory protein expression. Thus, ovarian RFRP-3/GPR147 signaling could contribute to normal ovarian function.
AB - RFamide-related peptide-3 (RFRP-3), a mammalian ortholog of avian gonadotropin-inhibitory hormone, has pronounced inhibitory effects on reproduction in a number of species. RFRP-3 suppresses gonadotropin release at the hypothalamic and/or pituitary levels; however, increasing evidence also suggests putative functions within the ovary. We have now demonstrated the expression of both RFRPand its receptor (GPR147) in primary cultures of human granulos a-lute in cells. Immunohistochemical analysis of normal human ovaries from premenopausal women showed that RFRPs and GPR147 were primarily localized in the granulosa cell layer of large preovulatory follicles as well as in the corpus luteum. Treatment of human granulosa-lutein cells with RFRP-3 reduced FSH-, LH- and forskolin-stimulated progesterone production and steroidogenic acute regulatory protein expression but did not affect basal or 8-bromoadenosine 3′5′-cyclic monophosphate stimulated levels. In addition, RFRP-3 inhibited gonadotropin- and forskolin-induced intracellular cAMP accumulation, and these effects were abolished by pretreatment with an inhibitor of inhibitory Gi/o proteins (pertussis toxin). Importantly, the effects of RFRP-3 on FSH-, LH-, and forskolin-induced cAMP and progesterone accumulation were completely eliminated by cotreatment with the bifunctional GPR147/GPR74 antagonist RF9 or by pretreatment with GPR147 small interfering RNA. These results suggest that RFRP-3 is expressed in human granulos a cells in which it acts via its receptor, GPR147, to inhibit gonadotropin signaling at the level of adenylyl cyclase via activation of a pertussis toxin-sensitive Gαi/o protein. This leads to reduced gonadotropin-stimulated cAMP accumulation and progesteronesynthesis, likely via reduced steroidogenic acute regulatory protein expression. Thus, ovarian RFRP-3/GPR147 signaling could contribute to normal ovarian function.
UR - http://www.scopus.com/inward/record.url?scp=84862745234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862745234&partnerID=8YFLogxK
U2 - 10.1210/en.2012-1066
DO - 10.1210/en.2012-1066
M3 - Article
C2 - 22691551
AN - SCOPUS:84862745234
SN - 0013-7227
VL - 153
SP - 3435
EP - 3445
JO - Endocrinology
JF - Endocrinology
IS - 7
ER -