Abstract
The Monte Carlo method was applied to the simulation of temporal evolutions of atomic arrangement in Ni-base ternary alloys. The ordering process is controlled by randomly selecting a single atom with one of its neighbouring atoms. The evaluation of the order parameter for Ni-22at.%Al-3at.%Ti, Ni-23.5%Al-3at.%Cr and Ni-25at.%Al-3at.%Co ternary alloys and Ni-25at.%Al binary alloy shows that no significant effects of Ti and Co on the ordering kinetics is observed. However, ordering kinetics are retarded by the addition of Cr. The formation rate of the γ′ phase in the Ni-17at.%Al-3at.%X (X = Ti, Cr and Co) alloy is highest in the Ni-Al-Co alloy and lowest in the Ni-Al-Ti alloy. The variations of average volume in the Ni-Al-Co alloys is very small. On the other hand, the average volume increases proportionally with time and approaches a constant value in the Ni-Al-Ti alloy. The variation of the partition coefficient of Ti indicates the enrichment of Ti in the γ phase. Both Co and Cr are enriched in the γ′ phase. With the increase of bulk Al content the concentrations of Cr and Ti decreases. In Ni-Al-Ti ternary alloys, all Ti atoms substitute for Al atoms in the Al sublattice in the γ′ phase. The simulation results are consistent with those obtained using cluster variation analysis.
Original language | English |
---|---|
Pages (from-to) | 10-16 |
Number of pages | 7 |
Journal | Materials Science and Engineering A |
Volume | 223 |
Issue number | 1-2 |
Publication status | Published - 1997 Feb 28 |
Keywords
- Free energy
- Monte Carlo simulation
- Ternary alloys
ASJC Scopus subject areas
- Materials Science(all)