The nanometer beam size monitor (Shintake monitor) at ATF2

Masahiro Oroku*, Youhei Yamaguchi, Jaqueline Yan, Takashi Yamanaka, Yoshio Kamiya, Taikan Suehara, Sachio Komamiya, Toshiyuki Okugi, Nobuhiro Terunuma, Toshiaki Tauchi, Sakae Araki, Junji Urakawa

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

My presentation focuses on the Shintake (Beamsize) Monitor which can measure nanometer electron beam sizes. The Shintake Monitor is installed in the Accelerator Test Facility 2 (ATF2) at KEK, Japan. ATF2 is a realistic scaled down model of the final focus system for the International Linear Collider. The final focusing scheme named the Local Chromaticity Correction will be tested for the first time in the world. The vertical design beam size at the focal point (virtual interaction point) is 37 nm. Shintake monitor has been designed to measure a beamsize down to 20 nm. It employs the interference pattern made by splitting laser beams and crossing them at the focal point of the electron beam. In their intersecting region, the electromagnetic fields of the two laser beams form a standing wave (interference fringe). The probability of the Compton scattering varies according to the phase of the standing wave where the electrons pass through. Then the total energy of photons from the Compton scattering is measured in a multi-layered ganma ray detector located downstream from the interaction point. This scheme was originally proposed by T. Shintake whose team measured a beamsize of approximately 65 nm with 10 percent resolution at FFTB, SLAC, a former test facility for the ILC. We upgraded this monitor to measure the even smaller beam sizes to be available at ATF2. The laser wavelength has been modified from 1064 nm to 532 nm using a second harmonics generator. The laser optics was newly designed and constructed by implementing a laser wire scheme to measure a larger horizontal beam size, and by enabling different crossing angles of split laser beams to measure a wide (diverse) range of vertical beam sizes. The gamma detector for Shintake monitor has also been newly developed. We evaluated the performance of Shintake monitor with a beam of several microns in size and confirmed its consistency with wire scanner measurements. The expected performance of the Shintake monitor and the current status of the electron beam at ATF, achieved a record in beam size history and near future plan for 37 nm beam size measurement will be mentioned.

Original languageEnglish
Title of host publicationIEEE Nuclear Science Symposuim and Medical Imaging Conference, NSS/MIC 2010
Pages1573-1577
Number of pages5
DOIs
Publication statusPublished - 2010 Dec 1
Externally publishedYes
Event2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, NSS/MIC 2010 and 17th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors, RTSD 2010 - Knoxville, TN, United States
Duration: 2010 Oct 302010 Nov 6

Publication series

NameIEEE Nuclear Science Symposium Conference Record
ISSN (Print)1095-7863

Conference

Conference2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, NSS/MIC 2010 and 17th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors, RTSD 2010
Country/TerritoryUnited States
CityKnoxville, TN
Period10/10/3010/11/6

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'The nanometer beam size monitor (Shintake monitor) at ATF2'. Together they form a unique fingerprint.

Cite this