The potential for the creation of a high areal capacity lithium-sulfur battery using a metal foam current collector

Hiroki Nara, Tokihiko Yokoshima, Hitoshi Mikuriya, Shingo Tsuda, Toshiyuki Momma, Tetsuya Osaka

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


Ahigh areal capacity lithium-sulfur batterymaking use of mass produced aluminum metal foam as a current collectorwas investigated. A sulfur/Ketjenblack (KB) composite was filled and deposited into the aluminum foam current collector via a predetermined filling procedure, resulting in high sulfur loading. The value for this loading was found to be 17.7 mg sulfur/cm2 by using carboxymethyl cellulose and styrene butadiene rubber (CMC + SBR) as a binder. An operating single-layer pouch-Type cell with an S/KBCMC+ SBR on Al foam cathode was created as a result of this synthesis and found to possess an unprecedentedly high areal capacity of 21.9 mAh/cm2. On the basis of the achieved areal capacity, the energy density of a theoretical lithium-sulfur battery was estimated with the assumption of an electrolyte/sulfur ratio of 2.7 μL/mg. This was calculated upon 100% of the pore volume in the S/KB-CMC + SBR on Al foam cathodes and polyolefin separator, along with the inclusion of the weights of the tabs for the current lead and pouch film packaging in the case of a seven-layer pouch-Type battery. With this calculation, it was determined that the creation of a lithium-sulfur battery with an energy density of greater than 200 Wh/kg is plausible.

Original languageEnglish
Pages (from-to)A5026-A5030
JournalJournal of the Electrochemical Society
Issue number1
Publication statusPublished - 2017

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Materials Chemistry
  • Electrochemistry


Dive into the research topics of 'The potential for the creation of a high areal capacity lithium-sulfur battery using a metal foam current collector'. Together they form a unique fingerprint.

Cite this