The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast

Mayumi Arata, Masamitsu Sato, Akira Yamashita, Masayuki Yamamoto*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II.

Original languageEnglish
Pages (from-to)225-238
Number of pages14
JournalGenes to Cells
Volume19
Issue number3
DOIs
Publication statusPublished - 2014 Mar

ASJC Scopus subject areas

  • Genetics
  • Cell Biology

Fingerprint

Dive into the research topics of 'The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast'. Together they form a unique fingerprint.

Cite this