Abstract
Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e.surface protonics) and catalytic reaction involving surface protonics (NH3synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.
Original language | English |
---|---|
Pages (from-to) | 4509-4516 |
Number of pages | 8 |
Journal | Physical Chemistry Chemical Physics |
Volume | 23 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2021 Feb 28 |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry