Abstract
The oxidative additions of CH4 to the ground and excited states of Pt, Pt-, and Pt+ species are studied by the symmetry-adapted cluster (SAC) and SAC-CI methods. The reaction path is examined by calculating the Hellmann-Feynman forces acting on C and H atoms of CH4. It involves the transition state and/or the activated complex. The activation energies of CH4 with the triplet Pt(3D; 5d9s1), singlet Pt(1 S; 5d10), anion Pt-(2S; 5d106s1), Pt-(2P; 5d106p1), and cation Pt+(2D; 5d9) are 102, 59, 75, 41, and 52 kcal mol- respectively. Further, there is a possibility for the excited state of the Pt- + CH4 system that the reaction proceeds with lower activation energy by relaxing onto the ground state curve along the reaction process. The activated complex Pt-(H)(CH3) is 29 kcal mol- more stable than the dissociation limit of the excited Pt- + CH4 system. This suggests the possibility of C-H activation by photoexcited Pt-. In the Pt- (H)(CH3) complex, both bent and linear forms are possible; the two forms transform through an energy barrier of 22 kcal mol-1. In the Pt and Pt+ complexes, only the bent forms are stable.
Original language | English |
---|---|
Pages (from-to) | 207-212 |
Number of pages | 6 |
Journal | Journal of Molecular Structure: THEOCHEM |
Volume | 281 |
Issue number | 2-3 |
DOIs | |
Publication status | Published - 1993 Apr 30 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Condensed Matter Physics
- Physical and Theoretical Chemistry