Thermal transport properties of a charge density wave

Hiroyuki Yoshimoto*, Susumu Kurihara

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)


    The effects of collective modes on the thermoelectric properties of a charge density system is studied. We derive the temperature dependences of thermoelectric power and thermal conductivity by applying the linear response theory to the Fröhlich Hamiltonian. Energy dissipation has been attributed to the nonlinear interaction between the phase mode and the amplitude mode, ignoring disorder effects. We have found that the temperature dependence of the correlation function between electrical and heat currents is the same as that of the correlation function between electrical currents. This implies that thermoelectric power is inversely proportional to temperature. We have also found that the temperature dependences of all correlation functions are essentially determined by the same mechanism - nonlinear amplitude-phase interaction. The thermal conductivity is nearly constant at a temperature above the amplitude mode gap, and is exponentially low at a temperature sufficiently below it.

    Original languageEnglish
    Article number014601
    JournalJournal of the Physical Society of Japan
    Issue number1
    Publication statusPublished - 2006 Jan


    • Charge density wave
    • Collective mode
    • Thermoelectric properties

    ASJC Scopus subject areas

    • General Physics and Astronomy


    Dive into the research topics of 'Thermal transport properties of a charge density wave'. Together they form a unique fingerprint.

    Cite this