Three-dimensional sound-field visualization system using head mounted display and stereo camera

Atsuto Inoue, Yusuke Ikeda, Kohei Yatabe, Yasuhiro Oikawa

Research output: Contribution to journalConference articlepeer-review

13 Citations (Scopus)

Abstract

Visualization of a sound field helps us to intuitively understand various acoustic phenomena in sound design and education. The most straightforward method is to overlap the measured data onto a photographic image. However, in order to understand an entire three-dimensional (3D) sound field by using a conventional two-dimensional screen, it is necessary to move a camera and measure repeatedly. On the other hand, the augmented reality (AR) techniques such as an video see-through head mounted display (VST-HMD) have been rapidly developed. In this study, we propose a sound field visualization system using an VST-HMD and a hand held four-point microphone. This system calculates sound intensity from the four sound signals in real time. Then, the sound intensity distribution is depicted as arrows in the 3D display. The position and angle of the microphones and users head are acquired via AR markers and head tracking sensors of the VST-HMD. The system realizes simple and effective visualization of 3D sound field information from the various directions and positions of view. For the experiments, the sound fields generated by loudspeakers and motorcycles were visualized. The results suggested that the proposed system can present information of the field in easily recognizable manner.

Original languageEnglish
Article number025001
JournalProceedings of Meetings on Acoustics
Volume29
Issue number1
DOIs
Publication statusPublished - 2016 Nov 28
Event172nd Meeting of the Acoustical Society of America - Honolulu, United States
Duration: 2016 Nov 282016 Dec 2

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Three-dimensional sound-field visualization system using head mounted display and stereo camera'. Together they form a unique fingerprint.

Cite this