Tight combinatorial manifolds and graded Betti numbers

Satoshi Murai*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)


In this paper, we study the conjecture of Kühnel and Lutz, who state that a combinatorial triangulation of the product of two spheres Si×Sj with j ≥ i is tight if and only if it has exactly i + 2j + 4 vertices. To approach this conjecture, we use graded Betti numbers of Stanley–Reisner rings. By using recent results on graded Betti numbers, we prove that the only if part of the conjecture holds when j > 2i and that the if part of the conjecture holds for triangulations all whose vertex links are simplicial polytopes. We also apply this algebraic approach to obtain lower bounds on the numbers of vertices and edges of triangulations of manifolds and pseudomanifolds.

Original languageEnglish
Pages (from-to)367-386
Number of pages20
JournalCollectanea Mathematica
Issue number3
Publication statusPublished - 2015 Sept 18
Externally publishedYes

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics


Dive into the research topics of 'Tight combinatorial manifolds and graded Betti numbers'. Together they form a unique fingerprint.

Cite this