TY - JOUR
T1 - Tire aerodynamics with actual tire geometry, road contact and tire deformation
AU - Kuraishi, Takashi
AU - Takizawa, Kenji
AU - Tezduyar, Tayfun E.
N1 - Funding Information:
Acknowledgements This work was supported (first and second authors) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from JSPS; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); and Rice–Waseda research agreement. This work was also supported (first author) in part by Grant-in-Aid for JSPS Research Fellow 17J10893. The computational method parts of the work were also supported (third author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University. The tire deformation used in Sect. 5 was provided by Bridgestone.
Funding Information:
This work was supported (first and second authors) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from JSPS; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); and Rice–Waseda research agreement. This work was also supported (first author) in part by Grant-in-Aid for JSPS Research Fellow 17J10893. The computational method parts of the work were also supported (third author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University. The tire deformation used in Sect. 5 was provided by Bridgestone.
Publisher Copyright:
© 2018, The Author(s).
PY - 2019/6/15
Y1 - 2019/6/15
N2 - Tire aerodynamics with actual tire geometry, road contact and tire deformation pose tough computational challenges. The challenges include (1) the complexity of an actual tire geometry with longitudinal and transverse grooves, (2) the spin of the tire, (3) maintaining accurate representation of the boundary layers near the tire while being able to deal with the flow-domain topology change created by the road contact and tire deformation, and (4) the turbulent nature of the flow. A new space–time (ST) computational method, “ST-SI-TC-IGA,” is enabling us to address these challenges. The core component of the ST-SI-TC-IGA is the ST Variational Multiscale (ST-VMS) method, and the other key components are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). The VMS feature of the ST-VMS addresses the challenge created by the turbulent nature of the flow, the moving-mesh feature of the ST framework enables high-resolution flow computation near the moving fluid–solid interfaces, and the higher-order accuracy of the ST framework strengthens both features. The ST-SI enables moving-mesh computation with the tire spinning. The mesh covering the tire spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-TC enables moving-mesh computation even with the TC created by the contact between the tire and the road. It deals with the contact while maintaining high-resolution flow representation near the tire. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the tire and road surfaces. It also enables dealing with the tire–road contact location change and contact sliding. By integrating the ST-IGA with the ST-SI and ST-TC, in addition to having a more accurate representation of the tire geometry and increased accuracy in the flow solution, the element density in the tire grooves and in the narrow spaces near the contact areas is kept at a reasonable level. We present computations with the ST-SI-TC-IGA and two models of flow around a rotating tire with road contact and prescribed deformation. One is a simple 2D model for verification purposes, and one is a 3D model with an actual tire geometry and a deformation pattern provided by the tire company. The computations show the effectiveness of the ST-SI-TC-IGA in tire aerodynamics.
AB - Tire aerodynamics with actual tire geometry, road contact and tire deformation pose tough computational challenges. The challenges include (1) the complexity of an actual tire geometry with longitudinal and transverse grooves, (2) the spin of the tire, (3) maintaining accurate representation of the boundary layers near the tire while being able to deal with the flow-domain topology change created by the road contact and tire deformation, and (4) the turbulent nature of the flow. A new space–time (ST) computational method, “ST-SI-TC-IGA,” is enabling us to address these challenges. The core component of the ST-SI-TC-IGA is the ST Variational Multiscale (ST-VMS) method, and the other key components are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). The VMS feature of the ST-VMS addresses the challenge created by the turbulent nature of the flow, the moving-mesh feature of the ST framework enables high-resolution flow computation near the moving fluid–solid interfaces, and the higher-order accuracy of the ST framework strengthens both features. The ST-SI enables moving-mesh computation with the tire spinning. The mesh covering the tire spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-TC enables moving-mesh computation even with the TC created by the contact between the tire and the road. It deals with the contact while maintaining high-resolution flow representation near the tire. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the tire and road surfaces. It also enables dealing with the tire–road contact location change and contact sliding. By integrating the ST-IGA with the ST-SI and ST-TC, in addition to having a more accurate representation of the tire geometry and increased accuracy in the flow solution, the element density in the tire grooves and in the narrow spaces near the contact areas is kept at a reasonable level. We present computations with the ST-SI-TC-IGA and two models of flow around a rotating tire with road contact and prescribed deformation. One is a simple 2D model for verification purposes, and one is a 3D model with an actual tire geometry and a deformation pattern provided by the tire company. The computations show the effectiveness of the ST-SI-TC-IGA in tire aerodynamics.
KW - Actual tire geometry
KW - Road contact
KW - ST Isogeometric Analysis
KW - ST Slip Interface method
KW - ST Topology Change method
KW - ST Variational Multiscale method
KW - Tire aerodynamics
UR - http://www.scopus.com/inward/record.url?scp=85064223999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064223999&partnerID=8YFLogxK
U2 - 10.1007/s00466-018-1642-1
DO - 10.1007/s00466-018-1642-1
M3 - Article
AN - SCOPUS:85064223999
SN - 0178-7675
VL - 63
SP - 1165
EP - 1185
JO - Computational Mechanics
JF - Computational Mechanics
IS - 6
ER -